View on GitHub

The Deep Learning for Science Workshop

The Deep Learning for Science workshop is with ISC’19 on June 20th, 2019 in Frankfurt, Germany. It is the second workshop in the Deep Learning on Supercomputers series. The workshop provides a forum for practitioners working on any and all aspects of DL for scientific research in the High Performance Computing (HPC) context to present their latest research results and development, deployment, and application experiences. The general theme of this workshop series is the intersection of DL and HPC, while the theme of this particular workshop is centered around the applications of deep learning methods in scientific research: novel uses of deep learning methods, e.g., convolutional neural networks (CNN), recurrent neural networks (RNN), generative adversarial network (GAN), and reinforcement learning (RL), for both natural and social science research, and innovative applications of deep learning in traditional numerical simulation. Its scope encompasses application development in scientific scenarios using HPC platforms; DL methods applied to numerical simulation; fundamental algorithms, enhanced procedures, and software development methods to enable scalable training and inference; hardware changes with impact on future supercomputer design; and machine deployment, performance evaluation, and reproducibility practices for DL applications with an emphasis on scientific usage.

Topics include but are not limited to:

As part of the reproducibility initiative, the workshop requires authors to provide information such as the al- gorithms, software releases, datasets, and hardware configurations used. For performance evaluation studies, we will encourage authors to use well-known benchmarks or applications with open accessible datasets: for example, MLPerf and ResNet-50 with the ImageNet-1K dataset.

Import Dates

Paper Submission

Authors are invited to submit unpublished, original work with a minimum of 6 pages and a maximum of 12 pages in single column text with LNCS style. All submissions should be in LNCS format and submitted using easychair.

Organizing Committee

Previous Workshop

1st Deep Learning on Supercomputers Workshop in SC’18 at Dallas, USA