USING THE MOST ADVANCED COMPUTERS TO SOLVE THE HARDEST PROBLEMS

EXASCALE DEEP LEARNING ENABLED PRECISION MEDICINE FOR CANCER

THOMAS BRETTIN Strategic Program Manager Argonne National Laboratory University of Chicago

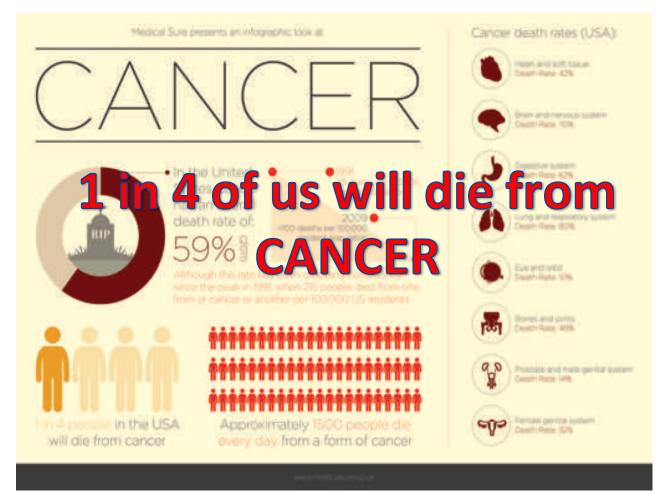
Thursday June 20th, 9:00 am – 4:00 pm. Deep Learning for Science, ISC2019

ACKNOWLEDGEMENTS

Materials in this presentation comes from Argonne, Oak Ridge, Livermore and Los Alamos National Laboratories, National Cancer Institute, Frederick National Laboratory for Cancer Research, and the University of Chicago

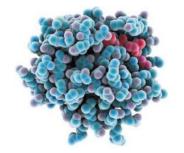
Special thanks to:

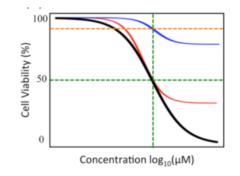
Gina Tourassi (ORNL). Fred Streitz and Brian Van Essen (LLNL). Tanmoy Bhattacharya and Jamal Mohd-Yusof (LANL). Eric Stahlberg and George Zaki (NCI). Rick Stevens, Fangfang Xia and Arvind Ramanathan (ANL)



THE 15 SECOND OVERVIEW

- What is the motivating problem
 - Cancer
- What is CANDLE
 - It is an exascale computing project application
 - It is a framework for executing computational (DL) experiments
- Results
 - It scales and is enabling discovery
- Next steps
 - Bigger challenge problems





CANDLE (<u>CAN</u>CER <u>D</u>ISTRIBUTED <u>L</u>EARNING <u>E</u>NVIRONMENT)

The National Cancer Institute challenges which CANDLE addresses

- understanding the molecular basis of key Ras protein interactions
- developing predictive models for tumor response to drug treatments

 extracting information from cancer patient records to determine optimal cancer treatment strategies

CANDLE IS A DOE EXASCALE COMPUTING PROJECT APPLICATION

ECP's work encompasses the development of an entire exascale ecosystem: **applications**, system software, hardware technologies and architectures, along with critical workforce development.

Exascale Systems 2021 - 2022

Frontier

ORNL

El Capitan

LLNL

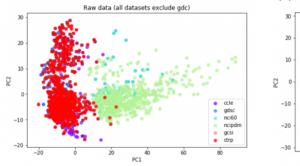
PROGRESS Updates since SC18, Dallas TX

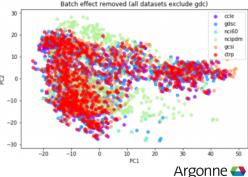
Hyperparameter Sweeps, Data Management (e.g. DIGITS, Swift, etc.)	workflow		
Network description, Execution scripting API (e.g. Keras, Mocha)	Scripting		
Tensor/Graph Execution Engine (e.g. Theano, TensorFlow, LBANN-LL, etc.)	Engine		
Architecture Specific Optimization Layer (e.g. cuDNN, MKL-DNN, etc.)	Optimization		
Search or jump to			
ECP-CANDLE / Benchmarks			
US. DEPARTMENT OF US. Department of Energy laboratory is a US. Department of Energy laboratory			

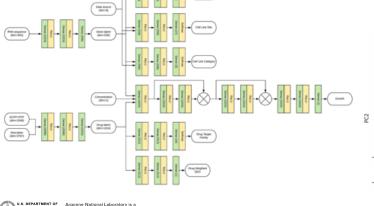
 Milestone 10 – CANDLE library released

 Milestone 11 – New benchmarks released

Milestone 12 – CANDLE v0.2.0 released

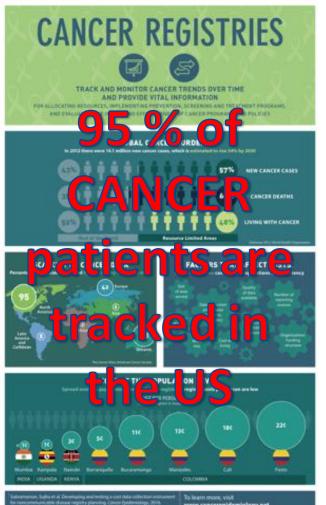

MULTI MODAL MULTI TASK DRUG RESPONSE MODEL


New CANDLE Benchmark


we proposed a new formulation of the dose response prediction problem that unified single and paired drug screening data

Data Source	# Tumor Samples	# Drugs	# Dose Response Samples	Treatment Type
NCI-ALMANAC	60	104	3,686,475	Drug pair
CCLE	504	24	93,251	Single drug
CTRPv2	887	544	6,171,005	Single drug
gCSI	409	16	58,094	Single drug
GDSC	1,075	249	1,894,212	Single drug
NCI	60	52,671	18,862,308	Single drug
GDC	11,081	N/A	N/A	N/A
NCI-PDM	1,198	12	518*	Single and paired drugs

* PDM drug response were measured differently from cell line dose response data.



U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

MODELING POPULATIONS

- Cancer registries present unique NLP challenges
- Pathology reports generated by hundreds of pathology labs and thousands of different pathologists
- Capturing accurate information for approximately
 - 60 cancer sites
 - 330 cancer topographies
 - -400 histological types
 - -9 histological grades
 - 5 laterality codes

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

ar monomenues, able chosen regaring planning. Cancer Epolemology, 2018. Jangla, Henroe et al. de tracance regarinment for Lancer registration or peter elle landers. Cancer Analysis of can data from four lane anti-molde encome automas. Cancer Spalemology, 2018.

9

U.S. Department of Health and Human Service

MULTI-TASK HIERARCHICAL CNN WITH ATTENTION FOR INFORMATION EXTRACTION

New CANDLE Benchmark

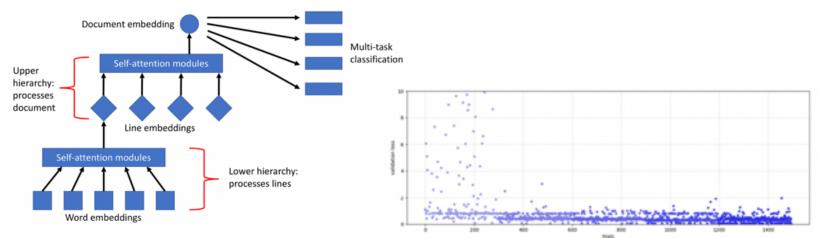
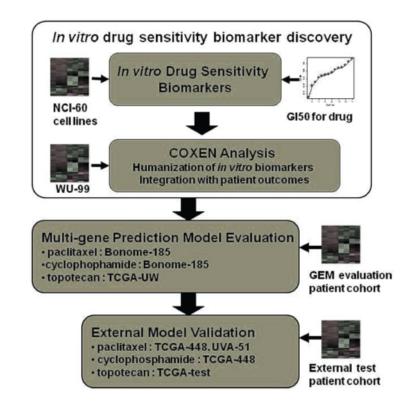


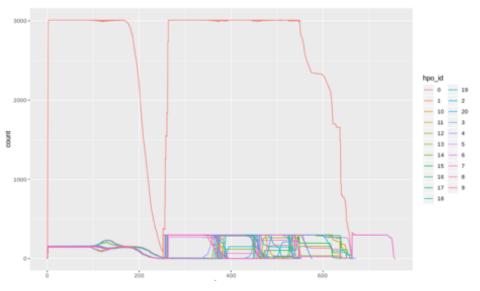
Figure 1: Multi-task hierarchical convolutional attention network (MT-HCAN) architecture

Clinical Task	Micro-F1 (MT-CNN)	Micro-F1 (MT-HCAN)	Macro-F1 (MT-CNN)	Macro-F1 (MT-HCAN)
Subsite	0.975	0.986	0.963	0.980
Laterality	0.966	0.981	0.965	0.980
Behavior	0.988	0.992	0.971	0.980
Grade	0.966	0.970	0.963	0.967

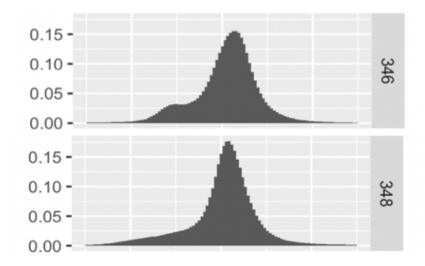
DRUG RESPONSE CROSS STUDY VALIDATION Candle Demonstration, Release v0.2


- Train on one study, predict on the others
- Perform feature selection based on cross-correlation
- Use biological knowledge derived features as control
- Perform hyperparameter optimization for different feature sets
- Train N best models
- Infer on other studies
- Investigate model uncertainty

FEATURE SELECTION


- CO-eXpression ExtrapolatioN (COXEN) algorithm
 - identify the genes whose expression in one study was related to drug sensitivity and then determined which of these genes maintained *concordant expression* in a second study.
- Lincs 1000
 - 1,000 landmarks genes sufficient to impute 82% of the remaining gene expression levels

HYPERPARAMETER OPTIMIZATION Concurrent experiments


- Perform 25 hyperparameter optimization experiments
 - 20 COXEN selected feature sets
 - F5 Lincs1000 selected feature sets
- Structural and learning parameters examined
 - network depth
 - network width
 - optimizers
 - activations
 - etc

INFERENCING

		Testing set				
		NCI60	CTRP	GDSC	CCLE	gCSI
	NC160	R2 = 0.81 MAE = 17.1	R2 = 0.38 MAE = 32.2	R2 = 0.24 MAE = 35.3	R2 = 0.48 MAE = 33.4	R2 = 0.46 MAE = 33.4
	CTRP	R2 = 0.44 MAE = 29.8	R2 = 0.68 MAE = 22.7	R2 = 0.23 MAE = 34.4	R2 = 0.61 MAE = 28.3	R2 = 0.60 MAE = 28.5
Training set	GDSC	R2 = 0.32 MAE = 34.0	R2 = 0.25 MAE = 36.7	R2 = 0.53 MAE = 27.2	R2 = 0.50 MAE = 32.6	R2 = 0.60 MAE = 29.2
	CCLE	R2 = 0.27 MAE = 36.9	R2 = 0.20 MAE = 39.2	R2 = 0.11 MAE = 38.9	R2 = 0.68 MAE = 25.4	R2 = 0.39 MAE = 34.2
	gCSI	R2 = 0.00 MAE = 44.9	R2 = 0.11 MAE = 43.1	R2 = 0.05 MAE = 42.8	R2 = 0.33 MAE = 40.6	R2 = 0.80 MAE = 192

CROSS STUDY VALIDATION

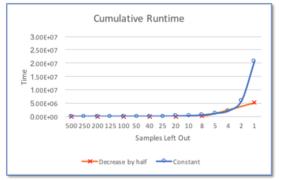
- Best results to date
- Room for improvement

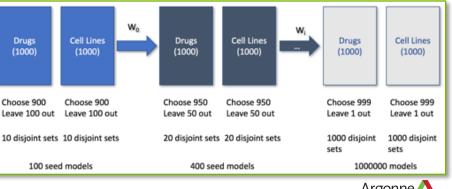
UNCERTAINTY QUANTIFICATION

- Normalized error for 450 models
- Exploring how to compare models

CANDLE DEMONSTRATION Milestone 12 – CANDLE v0.2.0 released

Stage	Quantity Description	
Data Pre-Processing	20 Feature selected data sets, one control (LINCS 1000)	
HPO Searches	25 HPOS (21,300 models searched)	
Model Training	450 Models trained	
Cross-Study Validation	450 Models screened	


Summit			
Inferences/node	82,782,891		
Inferences/hr/node	6,898,574		
Inferences/sec/node	1,916		
Nodes	450		
Total Inferences	37,252,301,160		
Total Inferences/hr	3,104,358,430		



ACCELERATED DNN TRAINING METHODOLOGY August 2019

- Develop accelerated training methodology
 - small portion of predictors will be trained from scratch
 - utilize pre-trained weights to speed-up model convergence for large number of models
 - explore recent advancements such as parameter sharing and pruning, and low-rank factorization
- Design learning rate schedulers
 - learning rate schedulers that allow models to converge when trained with pre-trained weights
- Explore DNN architectures
 - test pre-trained weights with various architectures that require long time to converge
 - include attention-based neural networks i.e. dot-product and multi-head attention

GITHUB AND FTP

ECP-CANDLE GitHub Organization:

<u>https://github.com/ECP-CANDLE</u>

ECP-CANDLE FTP Site:

- The FTP site hosts all the public datasets for the benchmarks from three pilots
- <u>http://ftp.mcs.anl.gov/pub/candle/public/</u>

Thank You

Dear DLS speakers,

Thanks again for your coming presentation at the Deep Learning for Science workshop at ISC'19, June 20th, Frankfurt Germany.

We have posted a tentative program at <u>https://dlonsc.github.io/</u>, please let me know if you need to present at a different slot.

Best, Zhao, Vali, Ian

