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•  general area including Machine and Deep Learning (ML/DL) 
 
•  Machine Learning (ML) – focus on training rather than explicit programming 

•  Deep Learning (DL): Focus on complex data sets with temporal  images including 
multi-pixels  

 
    è Requires deployment of stacks of modern  Convolutional & Recurrent Neural 

Networks 
 
     è Automated-search (“Hyperparameter Tuning”) usually required for best 

representations 

 
 

                          Artificial Intelligence (AI) 
                       Context:  F. Chollet (Google)  

           “Deep Learning with Python,” Nov. 2018 
 
“Automation of intellectual tasks normally performed by humans” 
 
 



Reference:  Rick Stevens (ANL/U.Chicago) 
2019 International Symposium on Simulation, 
Big-Data, & AI, Kobe, Japan 



APPLICATION FOCUS FOR AI/DL IN FES  
 
 
 
 
 
 
 
 
 

 
Most Critical Problem for Fusion Energy  à 
       Accurately predict, mitigate, & ideally avoid large-scale major disruptions in 
magnetically-confined thermonuclear plasmas such as the ITER –the $25B 
international burning plasma “tokamak”  
 
• Most Effective Approach:  Use of  big-data-driven statistical/machine-learning 
predictions guided by observations for the occurrence of disruptions in world-leading 
facilities such as  EUROFUSION “Joint European Torus (JET)” in UK, DIII-D (US), and 
other tokamaks worldwide such as KSTAR, EAST, JT60-SA (Asia) 
 
• Recent Status:   ~10 years of R&D results (led by JET) using Machine Learning 
(via Support Vector Machines) on zero-D (scalar) time trace data executed on CPU 
clusters yielding success rates in mid-80 to 90% range for JET 30 ms before 
disruptions,   
BUT > 95% accuracy with false alarm rate < 5% at least 30 milliseconds before 
actually needed for ITER !     Reference – P. DeVries, et al. (2015) 
 



Success of ITER Requires Sufficiently Low Disruption Rate 
Reference:  Dave Humphries, GA/DIII-D 

 

•   Mid-pulse disruptions eliminate  planned 
 discharge time following  disruptive event à 
greatly reduces physics  productivity 

•  Disruptions can require long recovery  time  
bad for overall shot frequency 

•  Disruption heat fluxes can reduce  
component lifetime  

   (e.g. divertor  target ablation) 

•  Damage to in-vessel components  can 
require shutdown for repair 

  Availability > 80%  
(during operation  
periods) 

Design target  <10% 
disruptivity 

forces in DIII-D 
Tile broken by disruption  Tile damage due to RE 

beam on JET 



Identify 
Signals 

• Classifiers 

Preprocessing 
and feature 
extraction 

Train model, 
Hyper parameter 

tuning 

All data placed on appropriate 
numerical scale ~ O(1) 
e.g.,  Data-based with all 
signals divided by their 
standard deviation 
 
 

Princeton U/PPPL AI/DL 
predictions now works with 
multi-D time trace signals 
(beyond zero-D) 

AI/DL/Machine Learning Workflow 

Normalization 

Measured sequential data 
arranged in patches of 
equal length for training 
 

Use model for 
prediction 

• All available data analyzed; 
• Train LSTM (Long Short Term 
Memory Network) iteratively; 
• Evaluate using ROC (Receiver 
Operating Characteristics) and 
cross-validation loss for every 
epoch (equivalent of entire data 
set for each iteration)  

Apply AI/DL/ML software 
on plasma state signals 



 Artificial Intelligence/Deep Learning brings new technology to accelerate progress 
"Predicting Disruptive Instabilities in Controlled Fusion Plasmas through Deep Learning” 
NATURE:   (accepted for publication, Jan. 2019, published, April 17, 2019 –  
DOI: 10.1038/s41586-019-1116-4) 
 
Princeton’s Fusion Recurrent Neural Network code (FRNN) uses convolutional & recurrent 
neural network components to integrate both spatial and temporal information for predicting  
disruptions in tokamak plasmas with unprecedented accuracy and speed on top supercomputers 

 
 



  
            Data flow and summary of the AI/DL FRNN algorithm 
         à highlights key challenge of associated plasma control 
  
 

 



Highlights of KEY ACHIEVEMENTS featured in NATURE PAPER (2019)  
à Implementation of modern AI/Deep Learning advances enabled key 

achievements for Fusion Energy Science including:   
 
(1)  Establishing ability to deal with one-dimensional “vector”physics signals for 

the first time (overcoming “curse of dimensionality”) – a significant 
improvement over previous Machine Learning R&D with focus on scalar-only 
“zero-D” signals. 

(2)  First demonstration of crucially-needed ability for predictive software trained 
on one experimental device (e.g., DIII-D tokamak) to make accurate 
predictions on another (e.g., the much larger, more powerful JET system) –> 
a key requirement for ITER – (enabling cross-tokamak facility training) 

(3)  Unique demonstration of AI/DL software capability to efficiently utilize 
leadership class supercomputers for aggressive hyperparameter tuning 
scans enabling efficient training on big databases – carried out, e.g. on Titan, 
Summit in US; Tsubame-3, ABCI in Japan –> and exascale systems in near 
future including Aurora-21 and Frontier in US; Fugaku (formerly Post-K) in 
Japan, and other emerging systems worldwide. 



FRNN Code PERFORMANCE:  ROC CURVES 
JET ITER-like Wall Cases @30ms before Disruption 

 
Performance Tradeoff: Tune True Positives (good: correctly caught disruption) vs. False 

Positives (bad: safe shot incorrectly labeled disruptive). 
 

TP: 93.5% 
FP: 7.5% 

TP: 90.0% 
FP: 5.0% 

ROC Area: 
0.96 

JET Data (~50 GB), 0D signals: 
•  Training: on 4100 shots from JET C-Wall campaigns 
•  Testing 1200 shots from Jet ILW campaigns 
•  All shots used, no signal filtering or removal of shots 

JET Data courtesy of  
J. Vega and A. Murari     
 



CNNs	&	RNNs	with	HPC	Innovations	Engaged	
 GPU training  

● Neural networks use dense tensor manipulations, efficient use of GPU FLOPS 
● Over 10x speedup better than multicore node training (CPU’s) 
 
 Distributed Training via MPI 
Linear scaling: 
● Key benchmark of “time to accuracy”: we can 
train a model that achieves the same results 
nearly N times faster with N GPUs 
Scalable 
● to 100s or >1000’s of GPU’s on Leadership 
Class Facilities 
● TB’s of data and more  
● Example: Training time on representative full 
dataset (~40GB, 4500 shots) of 0D signals  

○  SVM (JET) > 24hrs (on CPU cluster) 
○  FRNN (Princeton U – on 20 GPU’s) 

~40min 
 



FRNN Scaling Results on GPU’s  
•  Tests on OLCF Titan CRAY supercomputer 

–  OLCF DD AWARD:  Enabled Scaling Studies on  
   Titan currently up to 6000 GPU’s 
–  Total ~ 18.7K Tesla K20X Kepler GPUs 
 
     Tensorflow+MPI  

*** FRNN DL/AI software reliably 
scales to 1K P-100 GPU’s on 

TSUBAME 3.0  
“Grand Challenge Runs”  

(Tokyo Institute of Technology),Japan) 
 

à associated production runs 
contribute strongly to Hyper-pameter-

Tuning-enabled physics advances ! 



Hyper-parameter Tuning enabled by HPC 
•  Example à random grid of 100 iterations with 100 GPUs per each trial  

-- Trials run asynchronously to convergence  
-- Distributed training performed with data-parallel synchronous “Stochastic 
Gradient Descent (SGD) – standard approach in DL applications 
– Master loop determines the best set of parameters based on the validation level 

•  Exciting New Trends Emerging à aggressive large-scale hyper-
parameter tuning trials carried out on the “Titan” exhibit very promising 
potential for shifing the minimum warning time before disruptions to 50 
ms and now up to 100 ms and above.  

      à Strongly motivates new HPC-enabled studies enabled by deployment of new 
half- precision version FRNN* using NVIDIA Volta GPU’s on SUMMIT at ORNL   

 
        ** Significance:  Key to enabling future risk mitigation for ITER via 
                                        achieving increased pre-disruption warning time   
 



Cross Machine Disruption Prediction (DIII-D to JET) 
First demonstration of predictive DL software trained on one experimental device (DIII-D) 

to make accurate predictions on another (JET) – critical for ITER 
 

 
	

Train (DIII-D) 

  FRNN 1D    0.836 
  FRNN 0D   0.817 

  XGBoost   0.616 

Test (JET) 



  
 
 
 
 

Integration of HPC (using GTC Exascale Code) with Deep Learning 
Workflows (using FRNN DL Code) 

 
• “Knowledge & experience” now in place for carrying out path-to-exascale HPC 

simulations of ITER-relevant burning plasmas with powerful  
GTC code  

à ESP selection for SUMMIT and 2019 INCITE awardee of 740K SUMMIT Node 
Hours – 151% above our  request !  

     Example:  Neoclassical tearing modes (NTM’s) already experimentally observed 
in JET, but NO realistic models yet developed as improved pre-disruption 

classifiers in Machine Learning workflows à because of inability to include 
measured higher-D profiles (only scalars)  

 
• CNN & RNN allow including realistic 1D & higher-D measurements 
of profiles to enable  first-principles-based reduced models of NTM’s 
(supported by exascale GTC code) to be used in FRNN workflows.  

 
Example of “integration  of HPC with DL”  !  

 
 
 
  
 
 
 



  
 
 
 
 

Cross-Disciplinary R&D Opportunities  
 (e.g., for AI/DL Applications & Applied Math) 

 
Example:  Improving Efficiency of Dense Matrix Operations in Keras Methodology 

used in DL/AI FRNN Code 
 

• Hierarchical Matrix Operations on GPUs: Matrix-Vector Multiplication 
and Compression 

• Explore use of KAUST Basic Linear Solver (KBLAS) Packages  
 
 

     
  
 
 
 



DL/AI Vision Summary in Moving from Prediction to Control  

ZERO-D to HIGHER-D SIGNALS via 
CONVOLUTIONAL NEURAL NETS (CNN) CNN

0D signals  1D 

• Enables immediate learning of generalizable features (à 
helps enable cross-tokamak portability of DL/AI software) 

Control Algorithm 

Environment 

• Reinforcement learning enables 
transition  from PREDICTION to 
CONTROL !

• Takes advantage of increasingly 
powerful world class HPC 
(supercomputing) facilities ! 



Control Methods with Containers  
Ref: Vallery Lancey, Lead DevOps Engineer, “Checkfront” 

 
 

  •   Managing a system using human and internal controls 
•  Inputs dictate what the controller should do (setpoint) 
•  Outputs dictate what the controlled process should do 
•  Closed Loop Container:  (i) Contains feedback from the 
process to the controller; (ii) Controller able to self-correct to 
achieve desired outcome 



          Control System Management 

@vllry 

Traditional: ”Sysadmin"  examines the 

system, makes a  judgement, and 

performs an  action 

Automatic:  System tracks its own state 

& translates  the state to some internal  

action 

     POSSIBLE FRNN DEPLOYMENT INTO PCS of Tokamak Facilities e.g., DIII-D, JET, KSTAR, ...  
                                       A. Svyatkovskiy, Princeton U/PPPL/Microsoft 
 
Approach:   Deploy AI/DL/ML FRNN disruption predictor (described in NATURE) as a ”web-like service  
within Tokamak facilities using modified versions of  Microsoft’s “Azureml”/Azure Container Service 
 
1)  Can either use current version of FRNN or choose to train new pre-disruption classifiers with more 
 realistic “reduced HPC-enabled classifiers for – e.g., for NTM’s, ITER-relevant alpha-driven instabilities, etc.  
  
2) Prepare a "helper code" to deploy the model & interact via “RESTful API”–(details under development 
with Microsoft) 
 
3) This approach has potential to carry out predictions on the order of a few 10’s of micro-seconds 
     including network latency * 
* examples available from other cases in Microsoft applications deployment portfolio 



“Computing at the Edge”:  Real-Time Experimental Planning 

• Can we make our AI/DL FRNN Predictor fast & accurate enough? 
--- e.g., via reinforcement learning/inference/ applied math …... 
• Can we make our actuator models suffiently fast & realistic enough? 
--- e.g., via focused actuator planning with experimental partners 
 

Estimate:  plasma 
state from  limited 
measurements (DIII-D) 

Real-time  
Diagnostics 

“Where 
we think 
we are" 

Supervisory control:  shut 
down the shot or change  
mission requirements (TBD) 

Real-time prediction 
on DIII-D Actuator planning 

to optimize performance 
& avoid machine limits 
via FRNN in DIII-D 

“Where  
we want  
to go" 

“Where we  
think we  
could go" 

Much-faster-than-real-time prediction 

Forecast 
future behavior of the  
shot via AI/DL FRNN 
predictor 

“Where we  think 
we can be" 

         Faster-than-real-time prediction 

Actuator  
plan 



 
 
 
 
 
 
 
 
 
 
KEY UPCOMING AI/DL PROJECT FOCUS:   
 
è Moving from AI/DL-based Tokamak Prediction to real-time Plasma 

Control: 
-- first need to strongly complement AI/DL prediction results (NATURE paper) with 
dedicated new runs enabled by experimental proposals submitted to DIII-D and JET – 
plus new ones on long-pulse KSTAR, EAST, and JT-60SA 
--   need to begin experimental control studies involving deployment of 
DL/AI predictors within actual Plasma Control System (PCS) at DIII-D, JET, 
KSTAR, EAST, & JT60SA 
    à involves reinforcement learning, inference, etc. + deployment of novel 
actuators developed with strong engagement by diagnostics experts for PCS 
deployment of AI/DL predictors to initiate control studies. 
 
**** News:     US  Executive Order signed for huge upcoming 
investment in ARTIFICIAL INTELLIGENCE/DEEP LEARNING !  
(Feb.11, 2019) 
 
 


