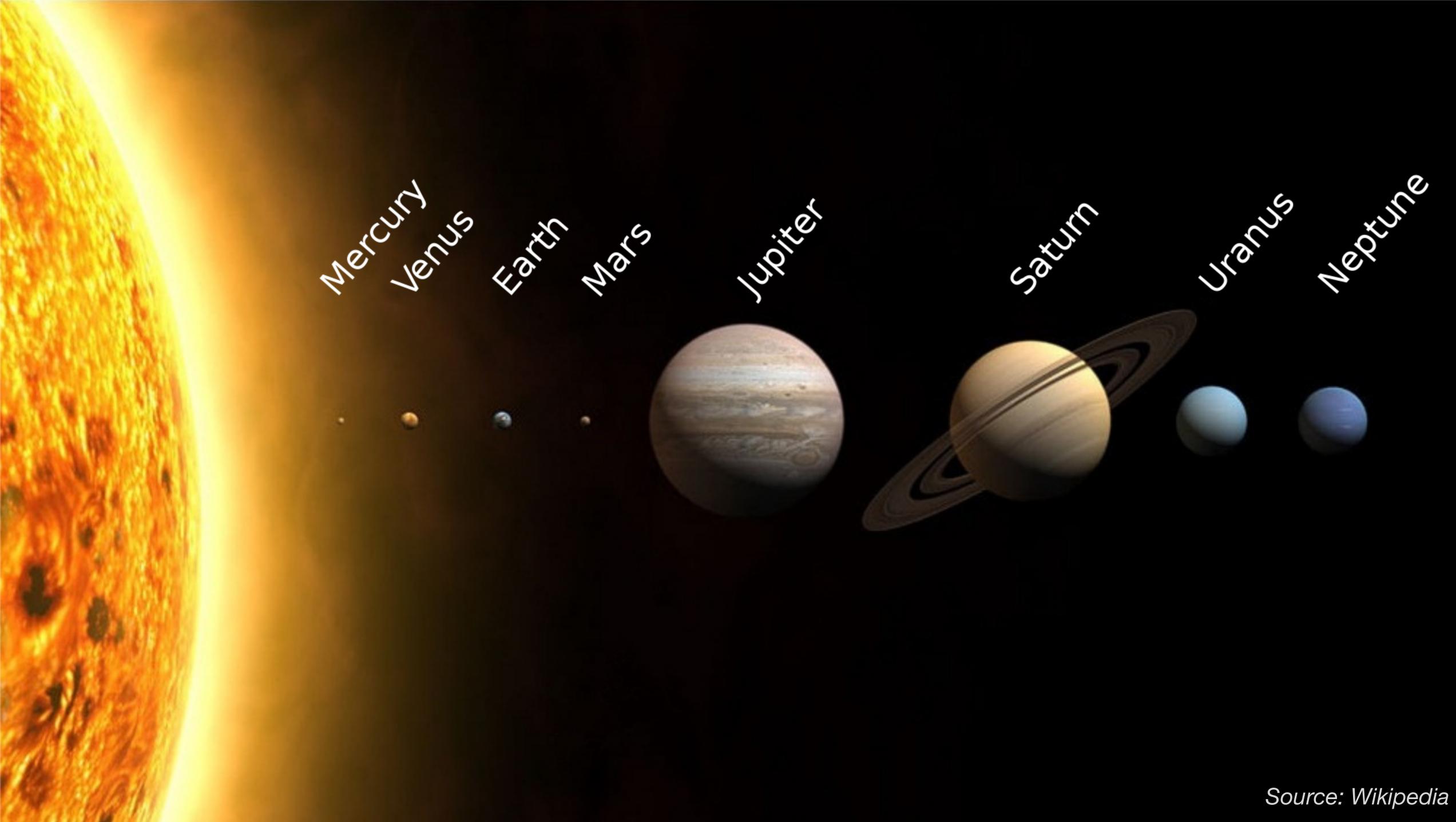
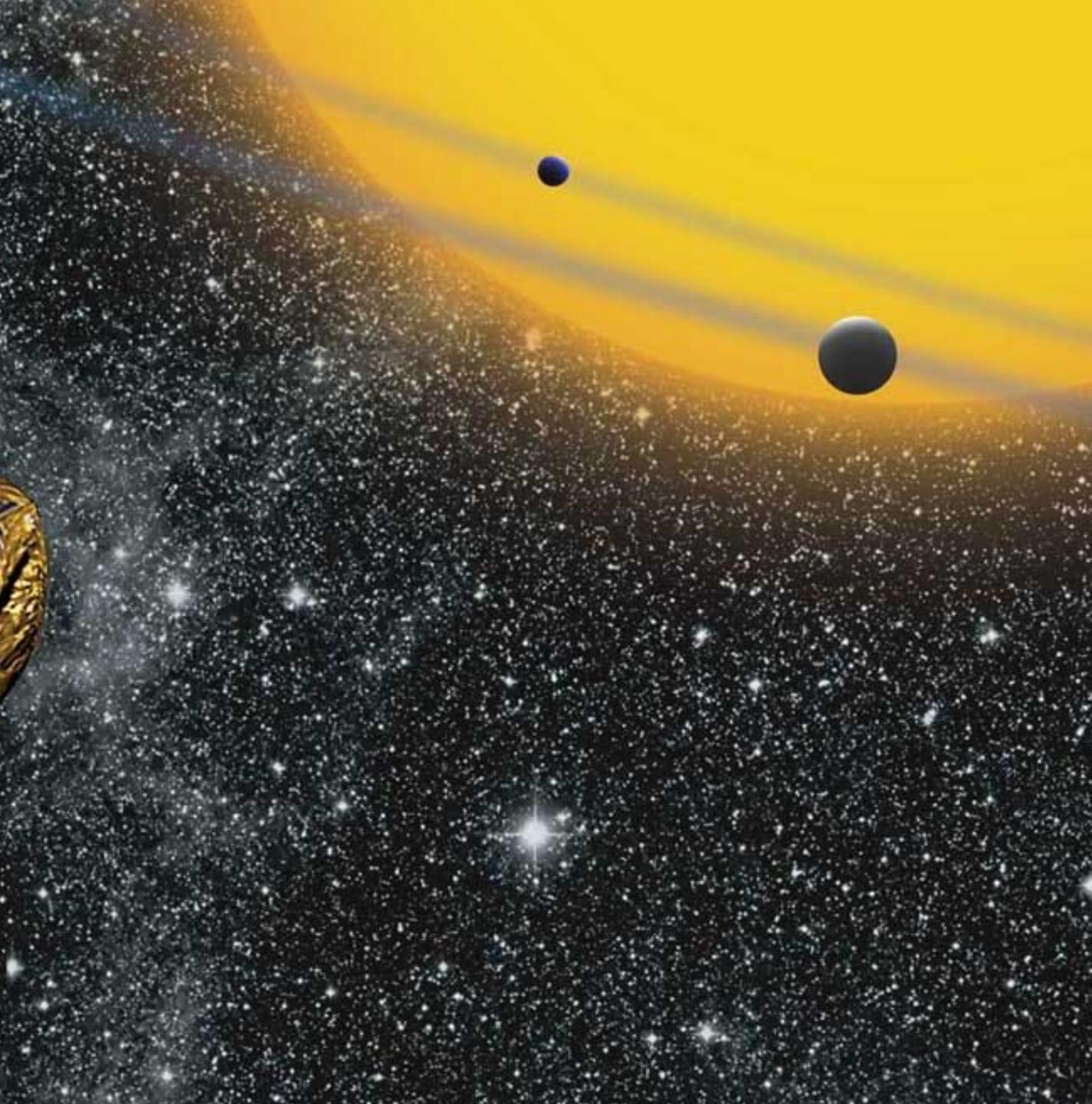
maxwellcai.com

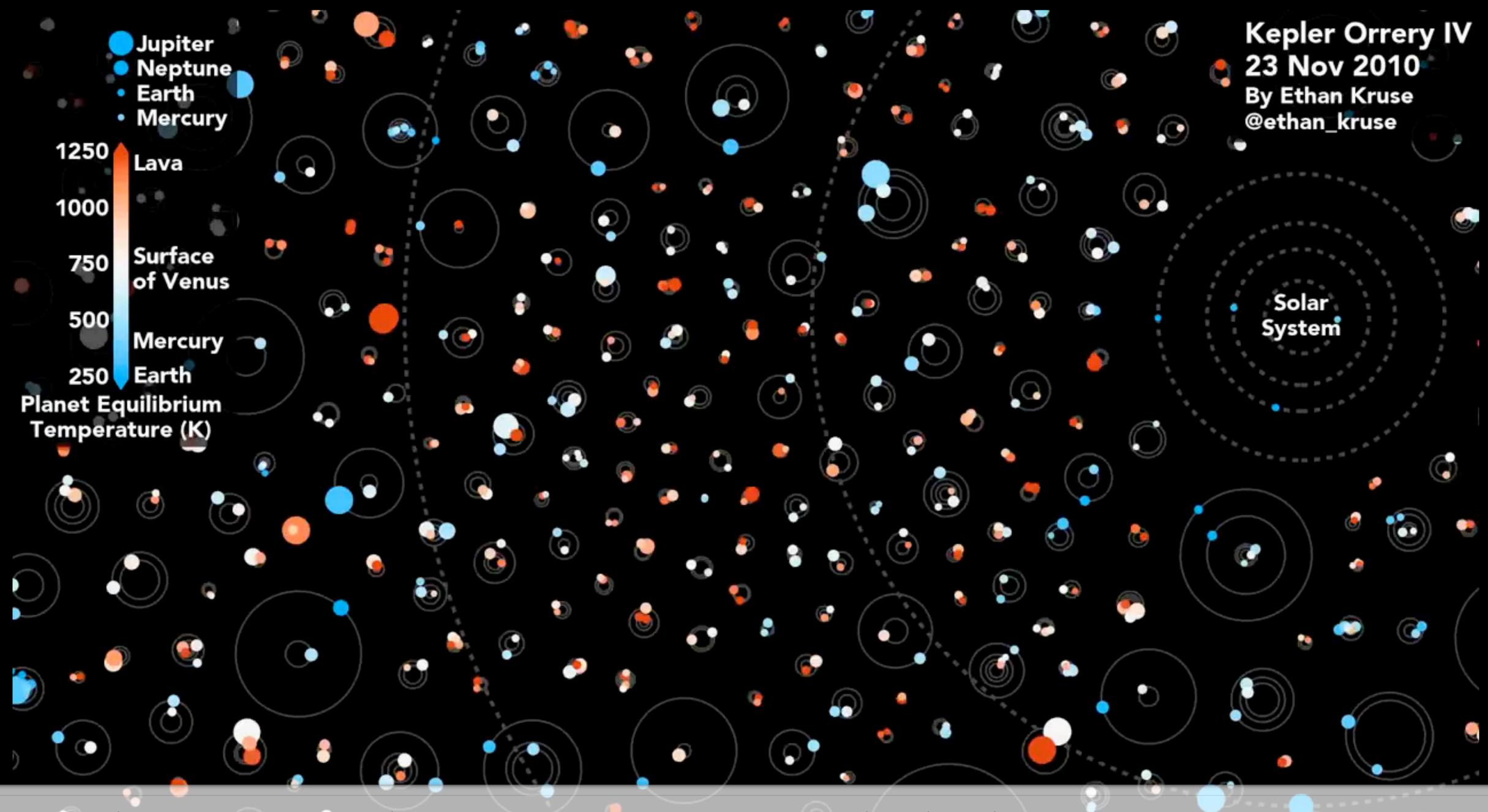
Accelerating the simulations of nonlinear dynamical systems with deep learning

Maxwell Cai (Leiden U/SURF) Simon Portages Zwart (Leiden U) Damian Podareanu (SURF) Valeriu Codreanu (SURF) Caspar van Leewuen (SURF)

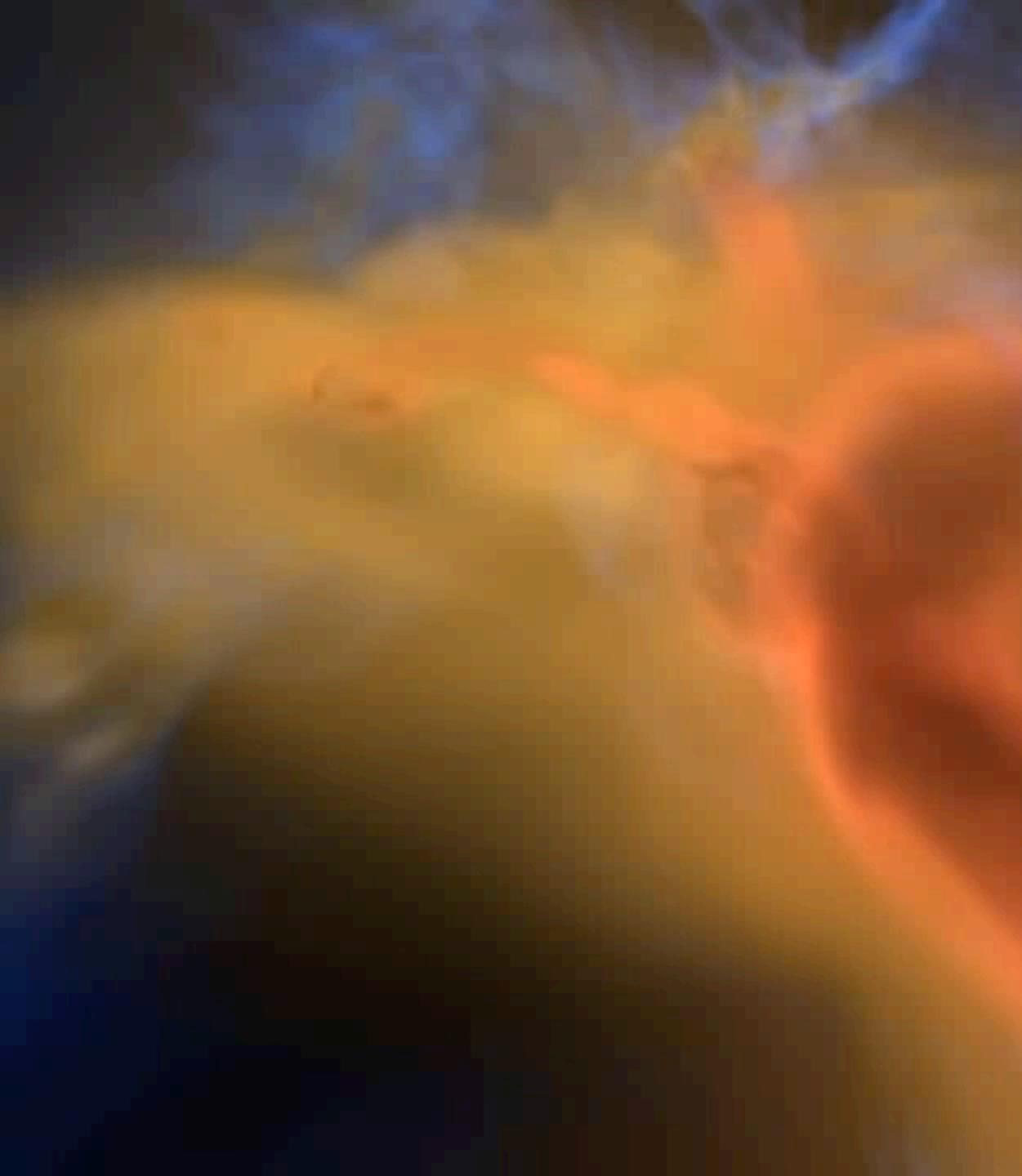


Credit: NASA

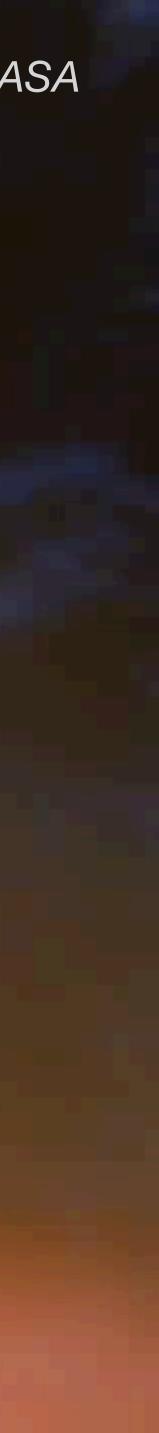




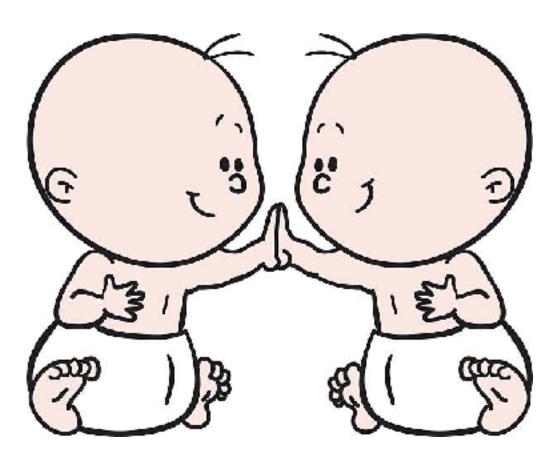
4,082 planets 3,046 planetary systems 660 multiple planetary systems (15 June 2019)



Credit: NASA



METHODOLOGY



Different education

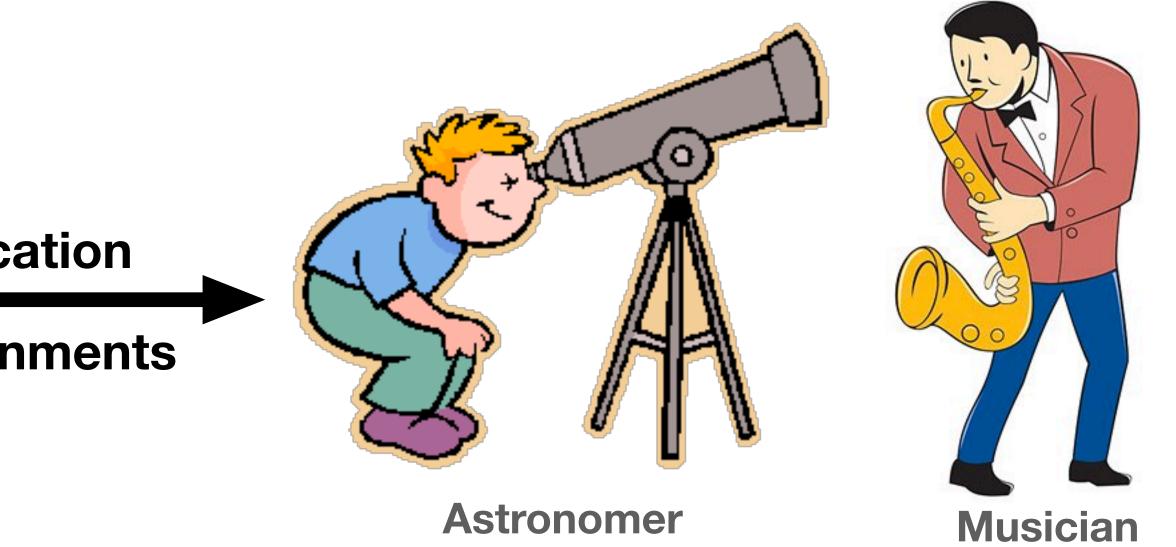
Different environments

Identical twins

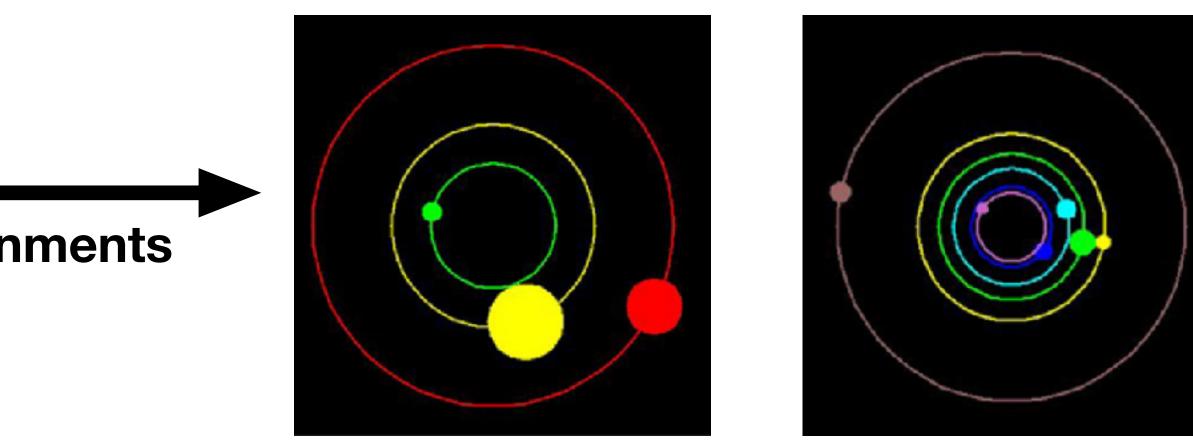
Less Diverse

TIME

Different environments



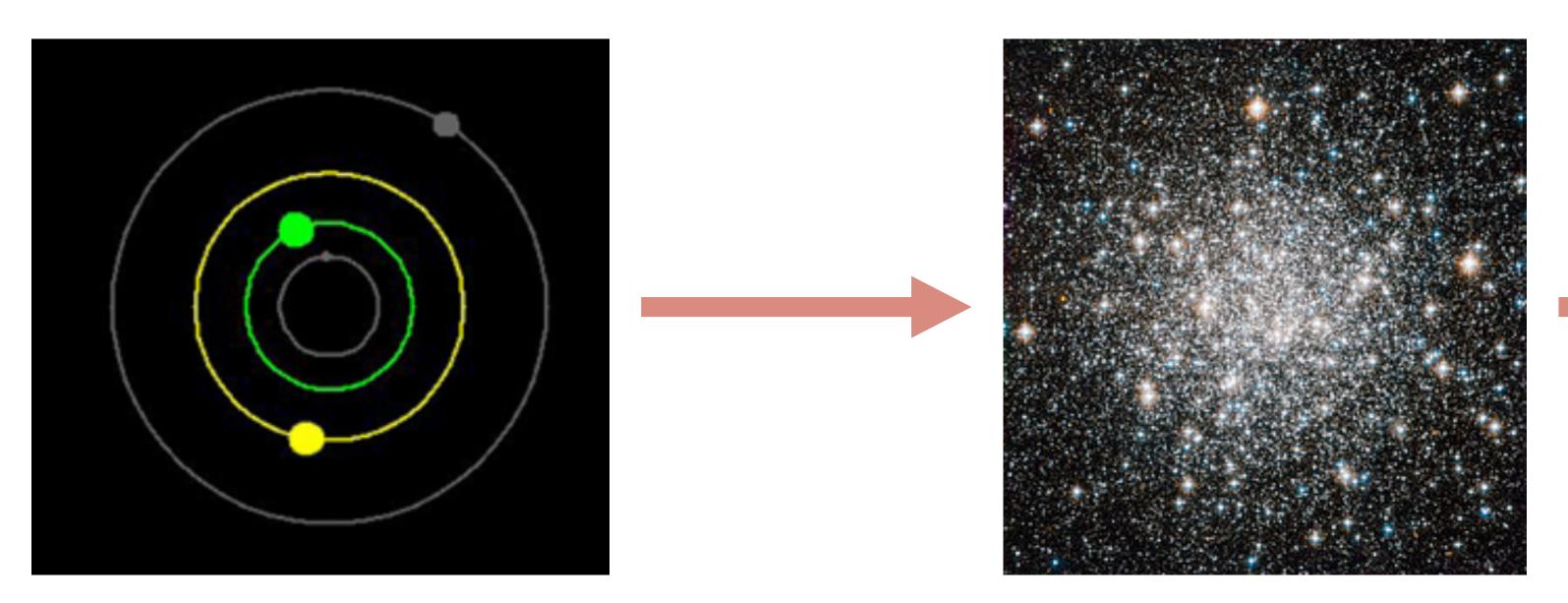
More Diverse



Different orbital architectures

Multi-scale Modeling

Solar System



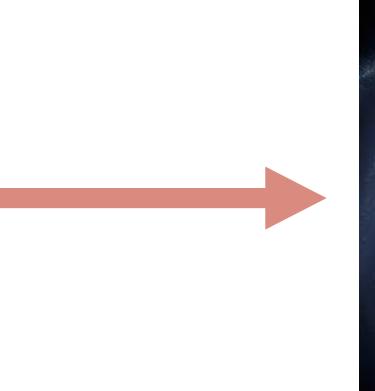
1-2 stars A few planets 100 AU

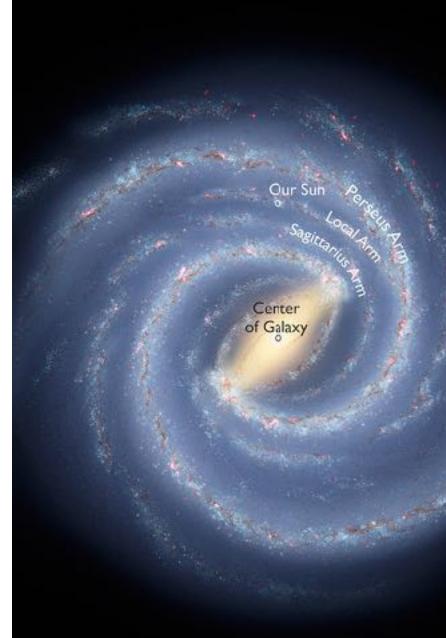
100,000,000 AU

1 AU = distance from Sun to Earth = 150,000,000 km

Star cluster

Milky Way





200,000,000,000 stars

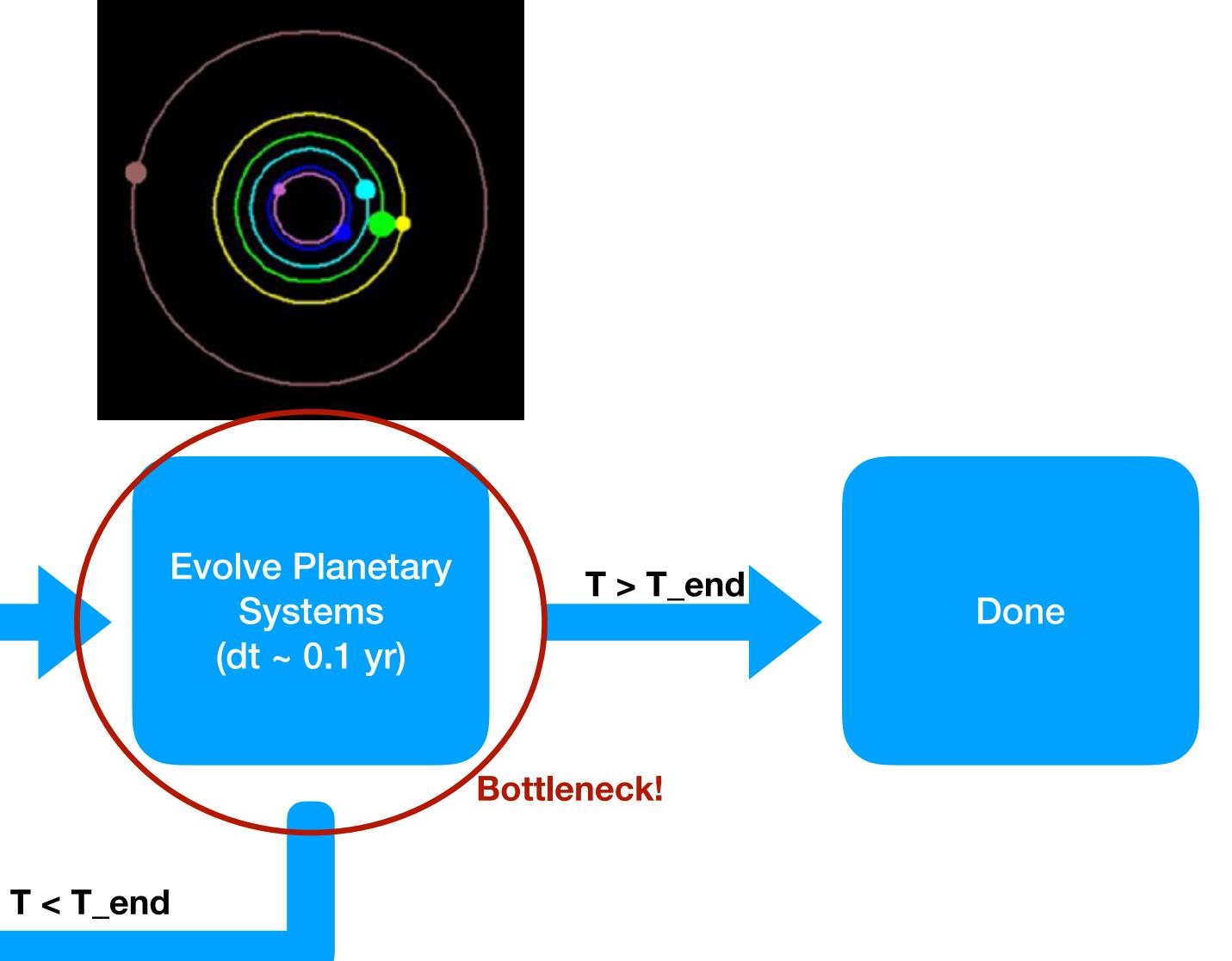
100,000,000,000,000 AU

0.27

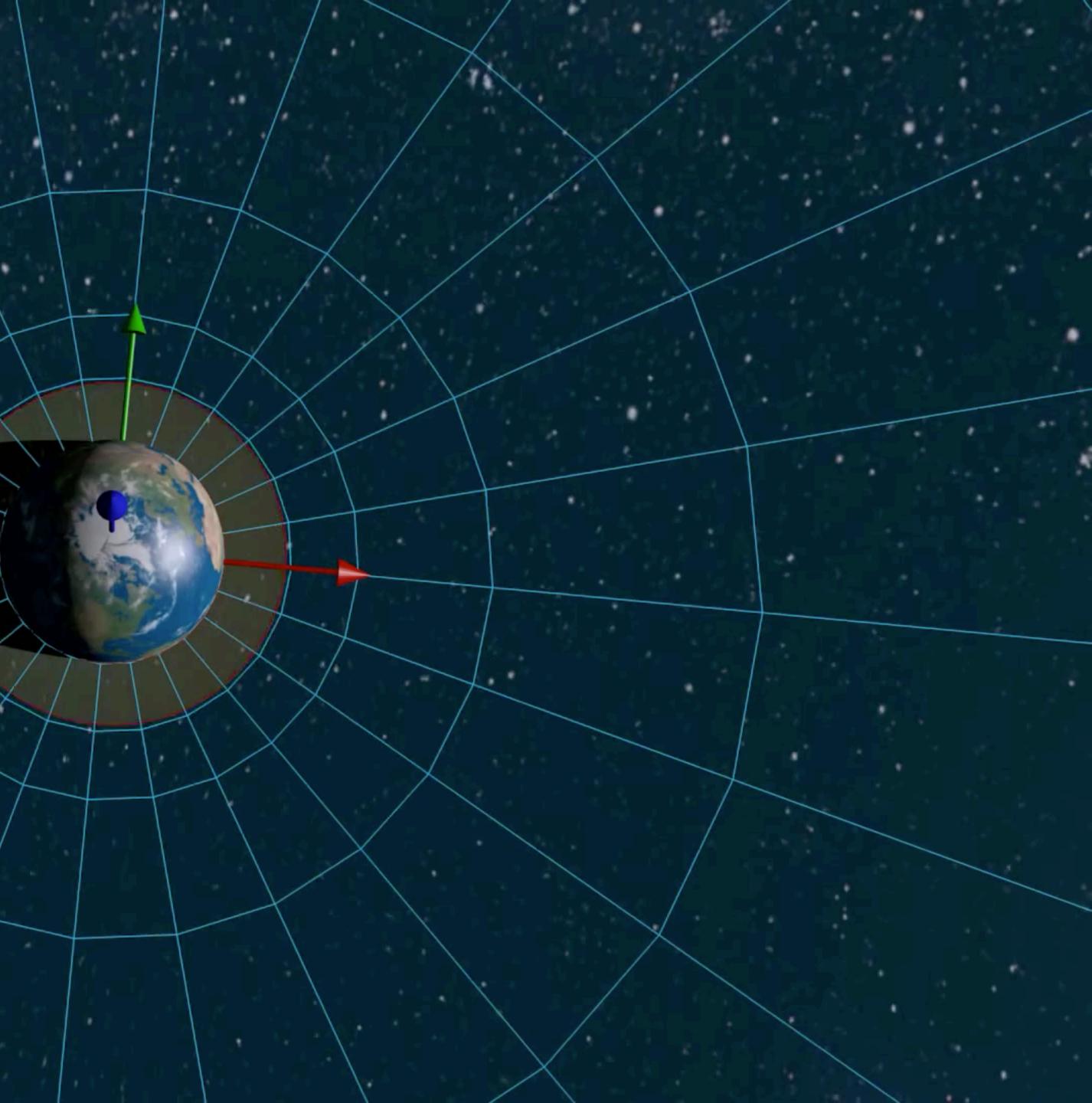
The Milky Way, the galaxy in which our sun goes round every 200 million years.

Multi-scale Modeling

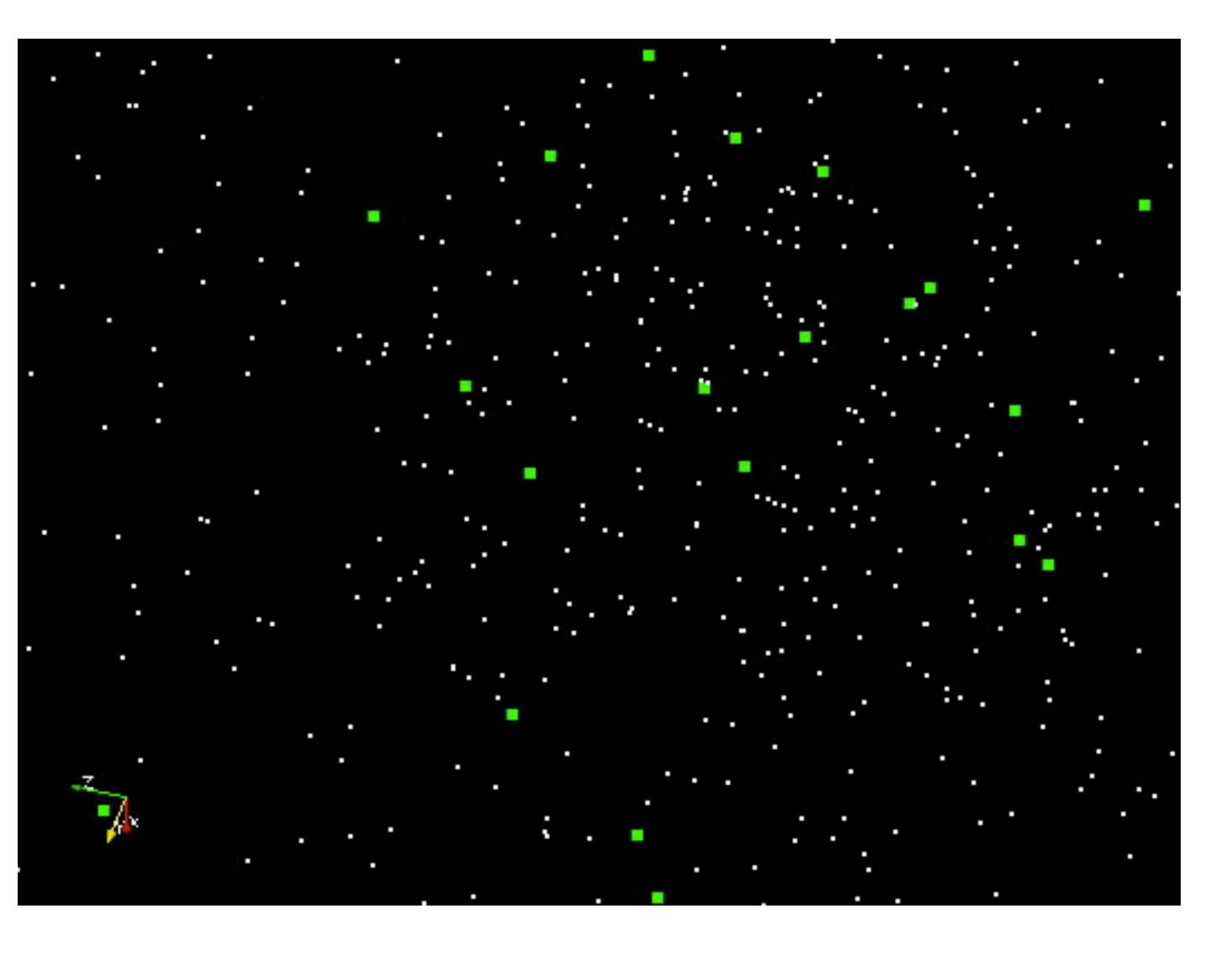
Evolve Star clusters (dt ~ 1000 yr)



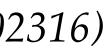
Credit: University of Bristol



Coevolution of Planetary Systems and the Host Cluster

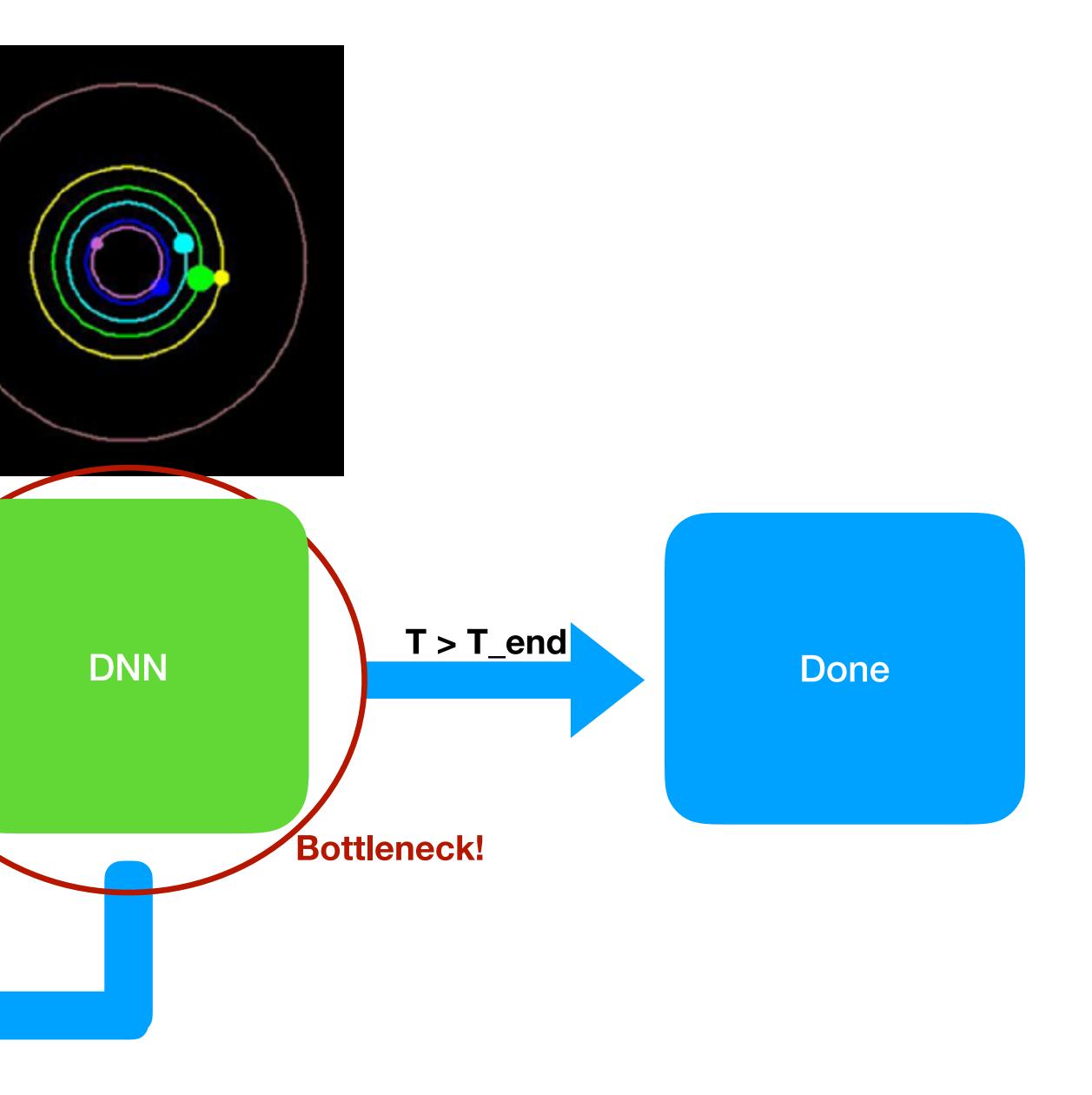


Cai et al. 2015 (ApJS, 219, 31), Cai et al. 2017 (MNRAS, 470, 4337), Cai et al. 2018 (MNRAS, 474, 5114), Cai et al. 2019 (arXiv: 1903.02316)

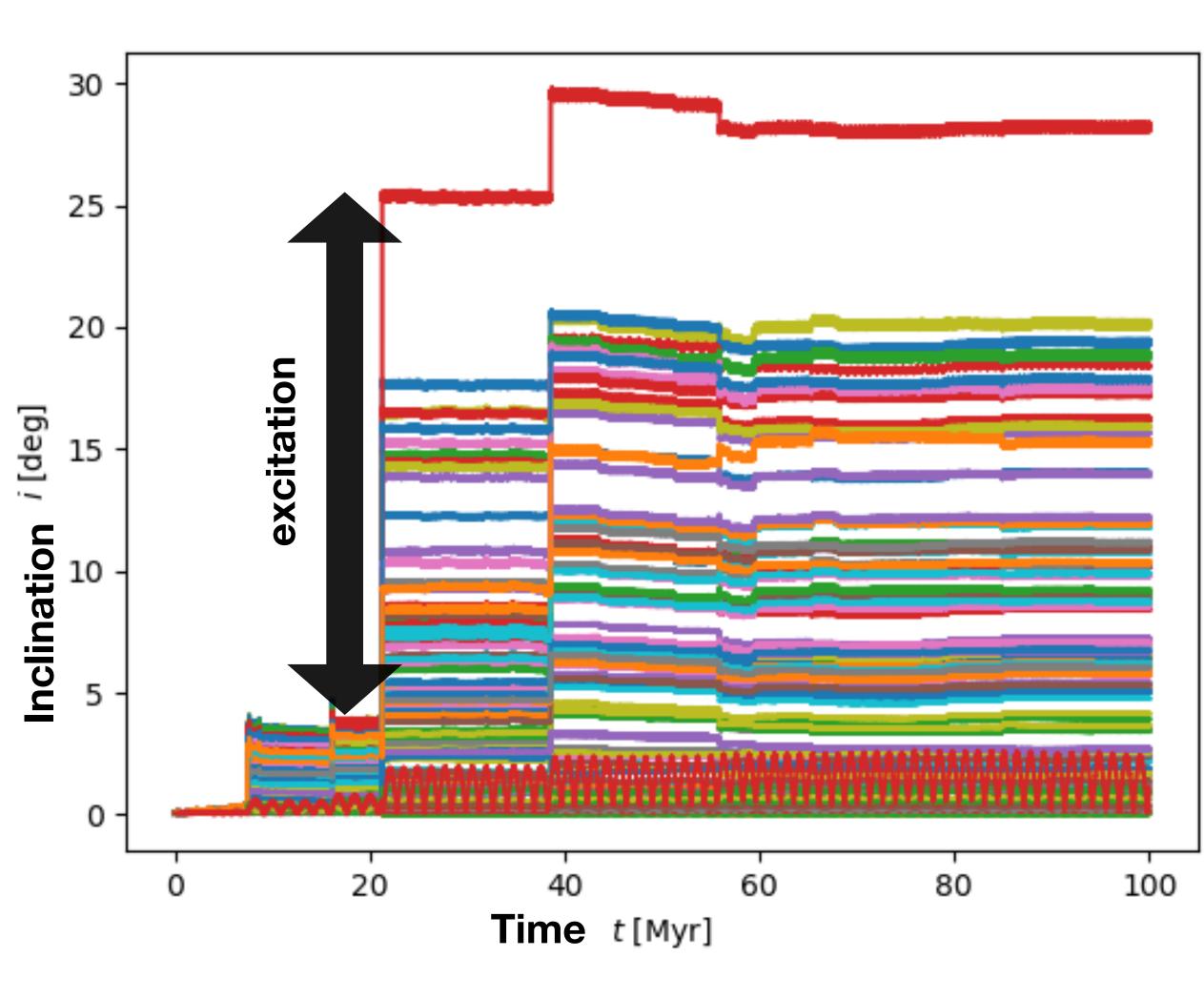


Multi-scale Modeling

Evolve Star clusters (dt ~ 1000 yr)



Cai et al. in prep.



Challenges

- Predict on extremely long timescales
- The systems exhibit chaotic behaviors
- High dynamic range
- Huge parameter space
- Imbalance training samples interesting events are rare

Cai et al. in prep.

Predict individual systems accurately

Very challenging on long timescales

Predict overall statistics accurately

Possible, but simple ML might be enough

Predict both individual systems and overall statistics accurately

Very challenging on long timescales

Challenges

- Predict on extremely long timescales
- The systems exhibit chaotic behaviors
- High dynamic range
- Huge parameter space
- Imbalance training samples interesting events are rare

Systems

tary

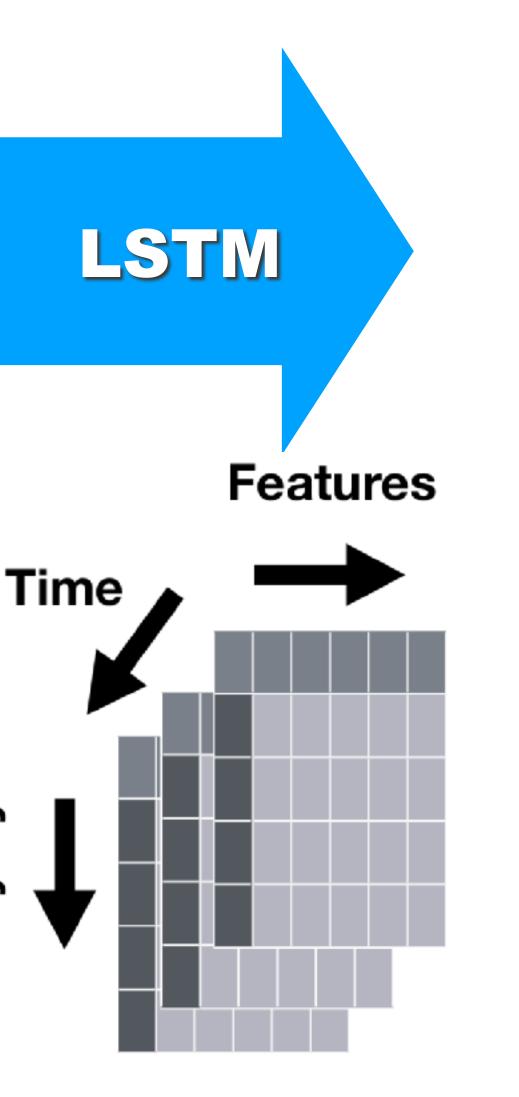
Plane

Multiple Features

- Eccentricities
- Inclinations
- Semi-major axis
- Mass of perturber
- distance of the perturber
- velocity of the perturber
- position of the perturber

Multivariate Time Series Prediction

LSTM: Long Short-term Memory (Hochreiter & Schmidhuber 1997)

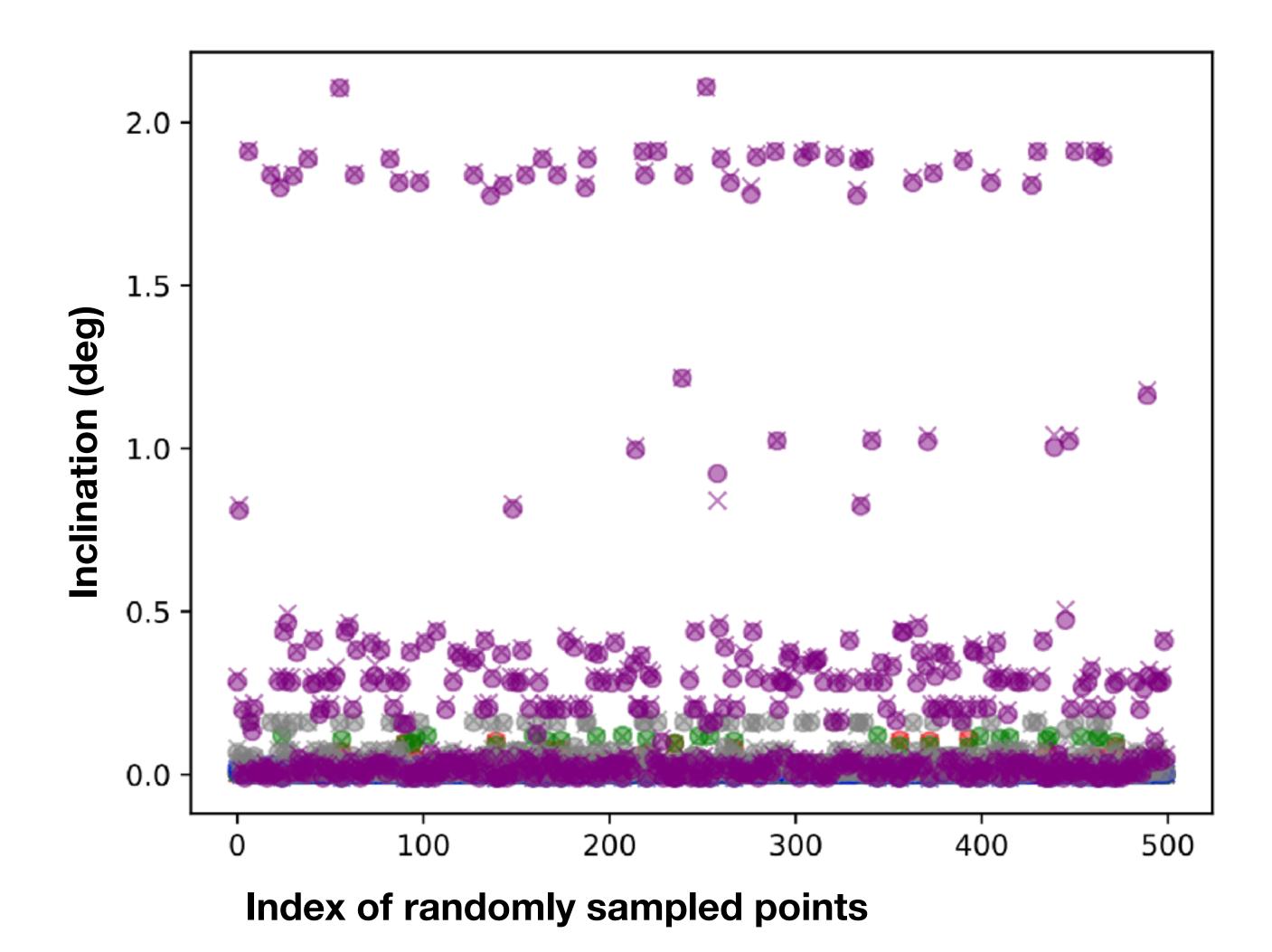


Next *n* steps

- Eccentricities
- Inclinations
- Semi-major axis

Limitation of Time Series Prediction

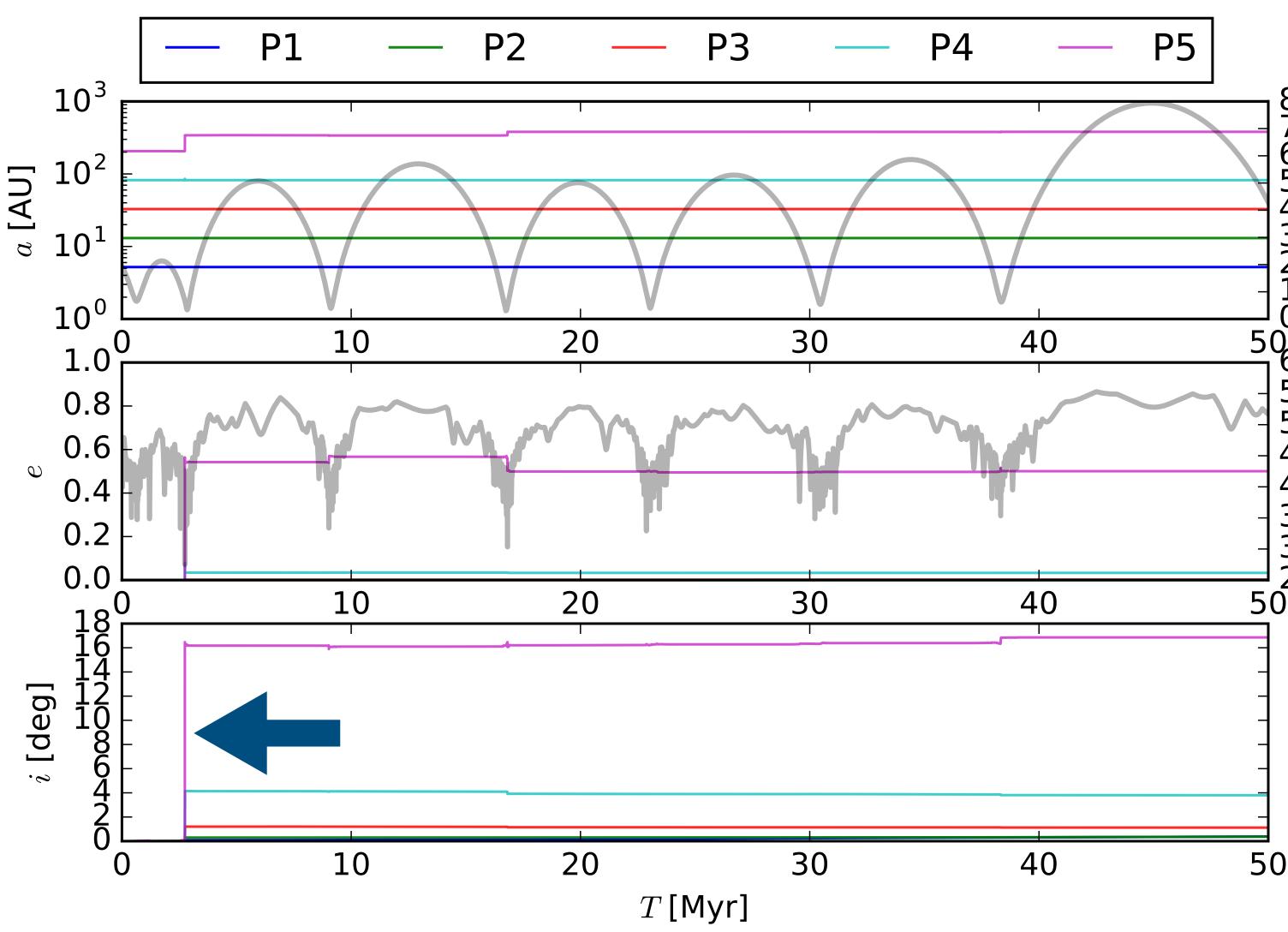
- Reasonably accurate for short timescales
- Errors accumulate over long timescales



Supervised learning

Supervised learning requires:

- ➡ Samples are randomized among batches
- Each batch has the same or similar distribution
- Samples are independent of each other in the same batch

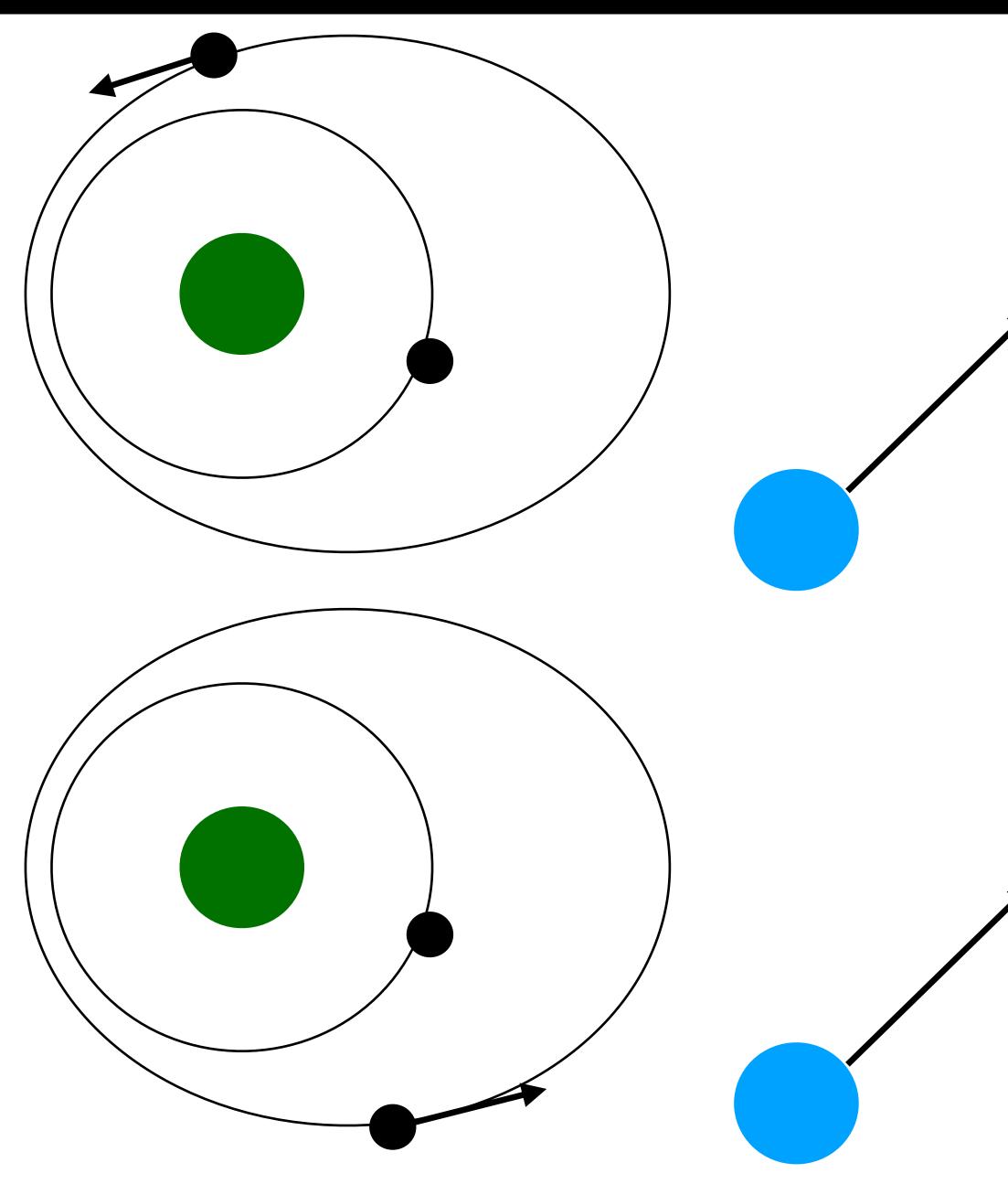


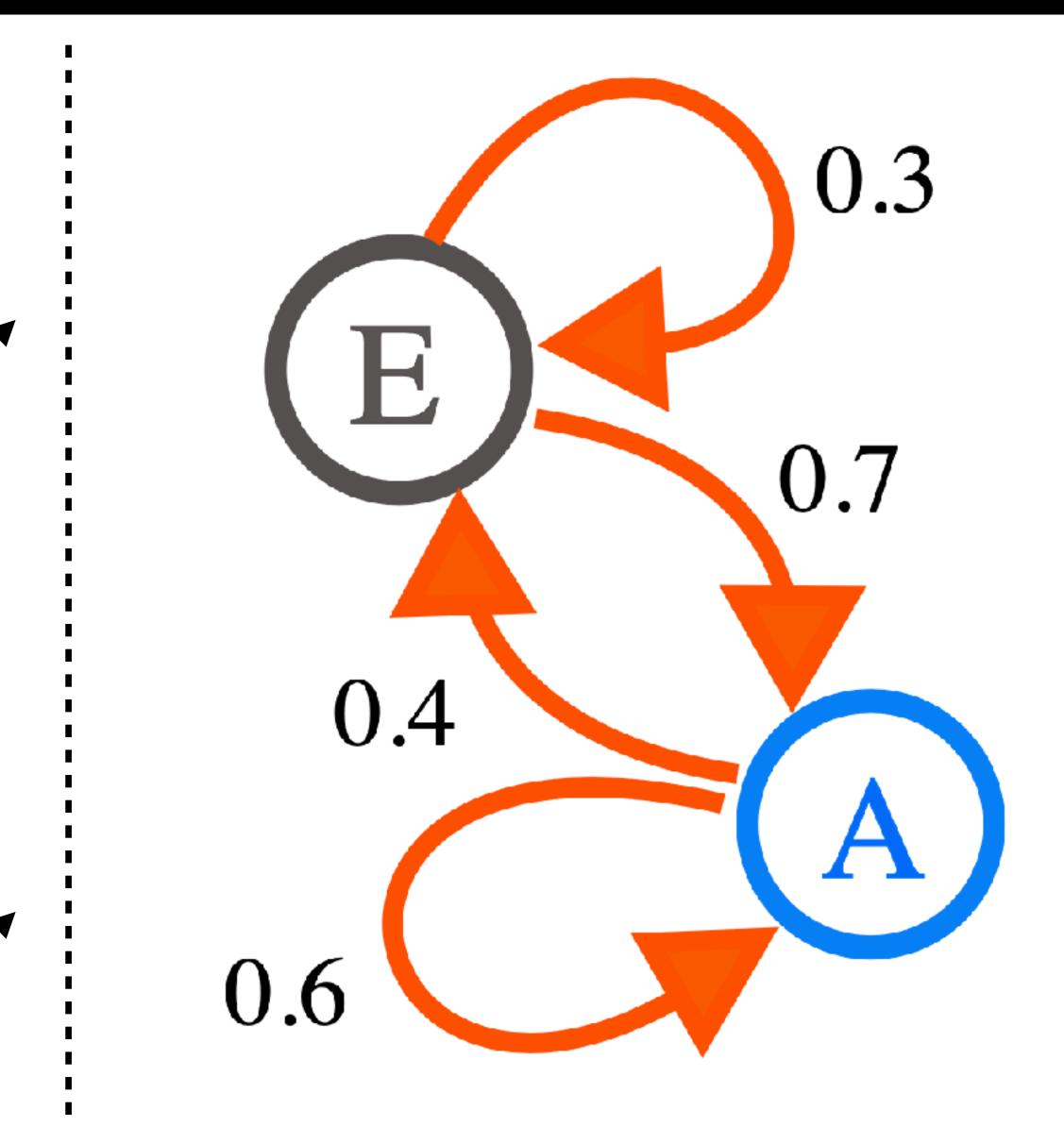
8 6 5 [pc] 432 $R_{ m SC}$ 506.0 5 5 5 0 050 4. 3. 3. .5 2 50

Better solution?

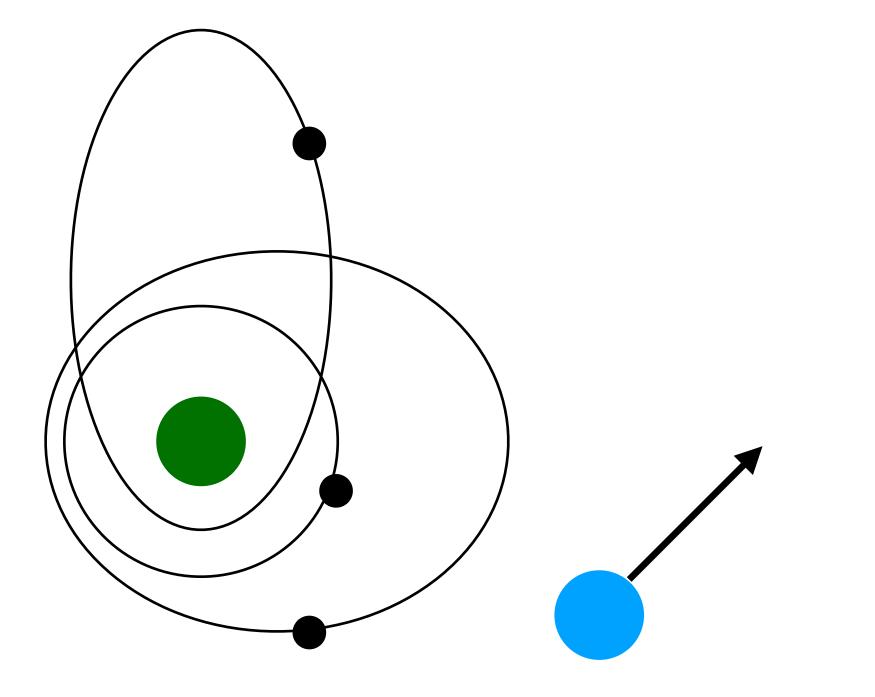
Can a neural network learn the physics by itself?

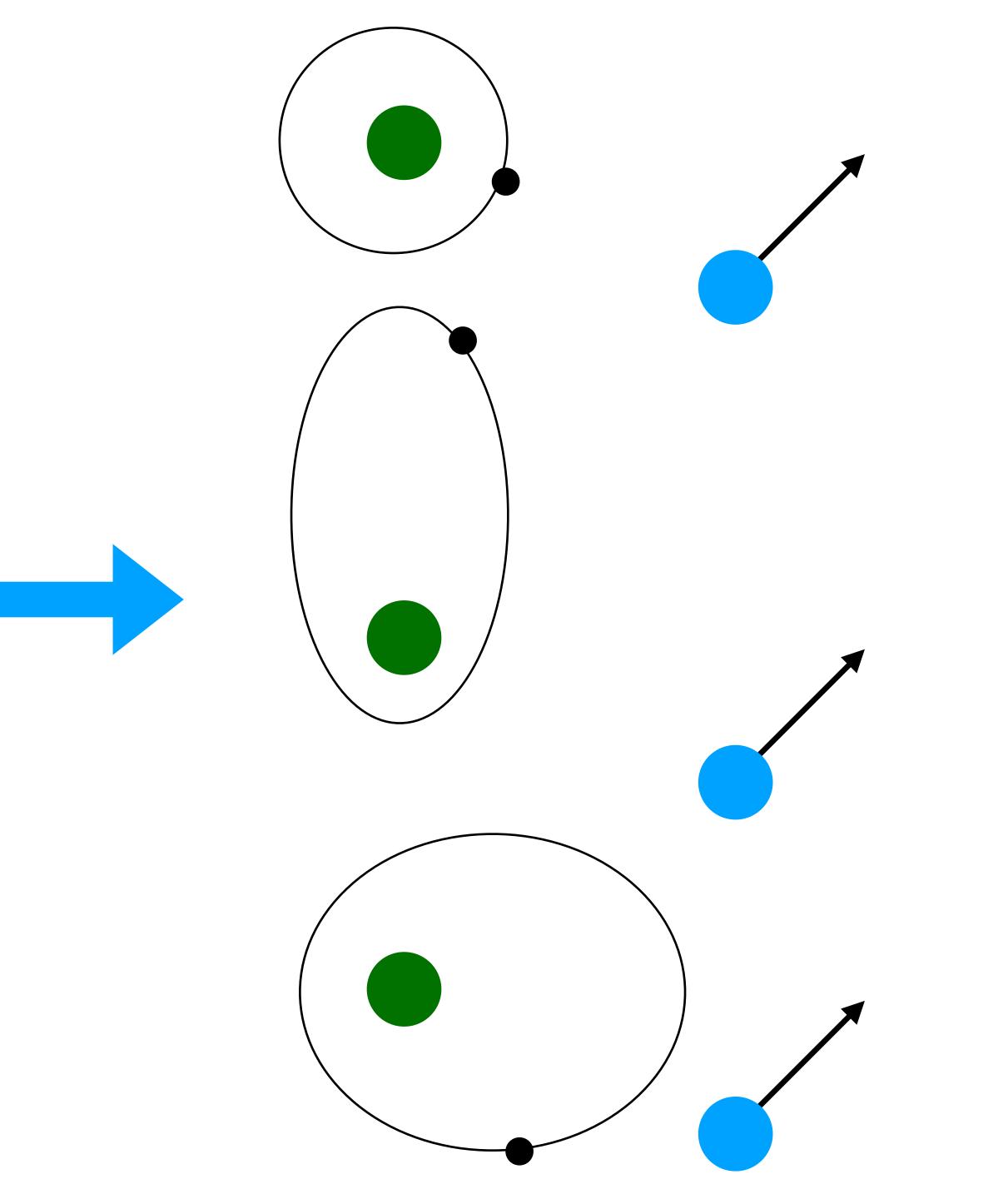
Stocastic Orbital Changes



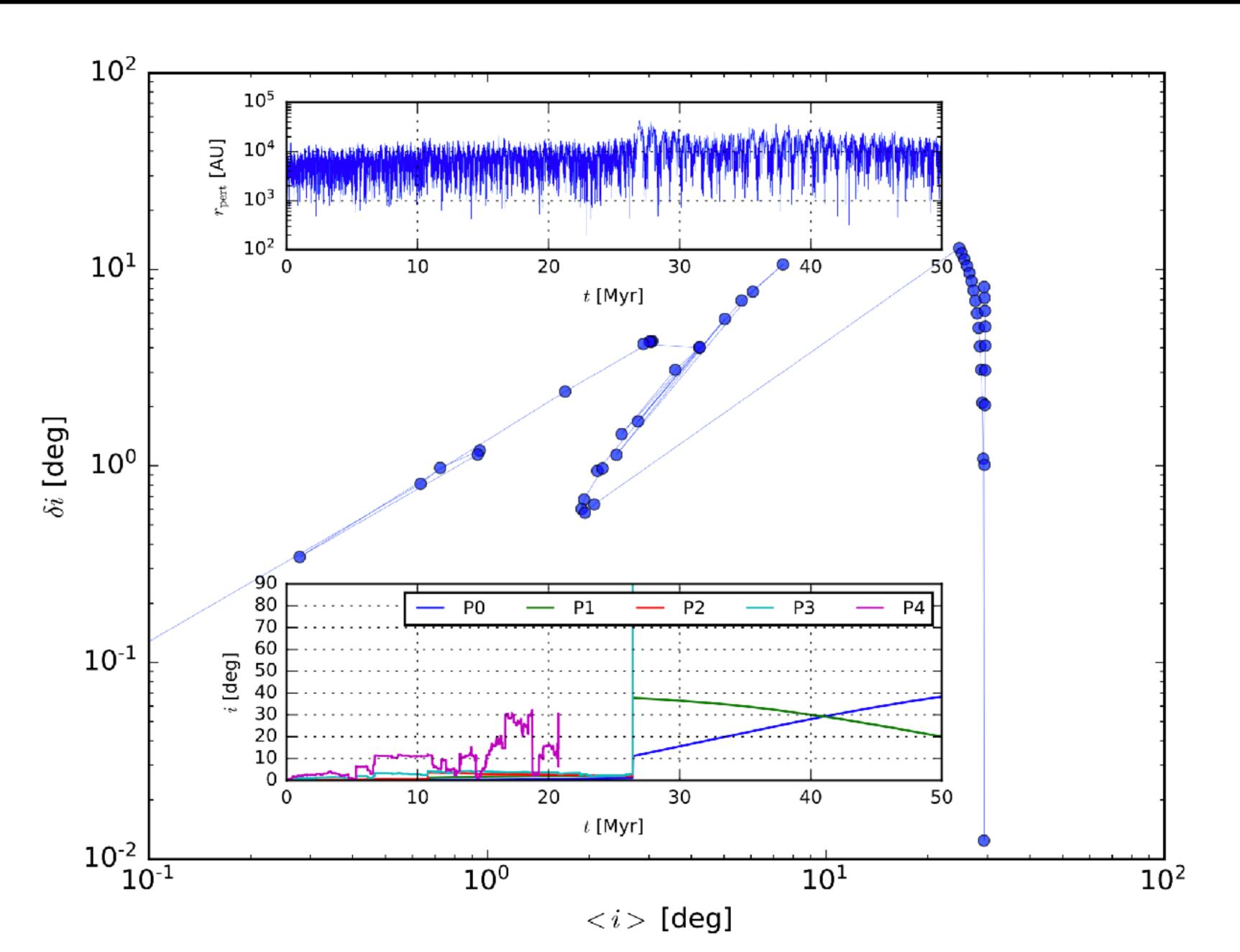


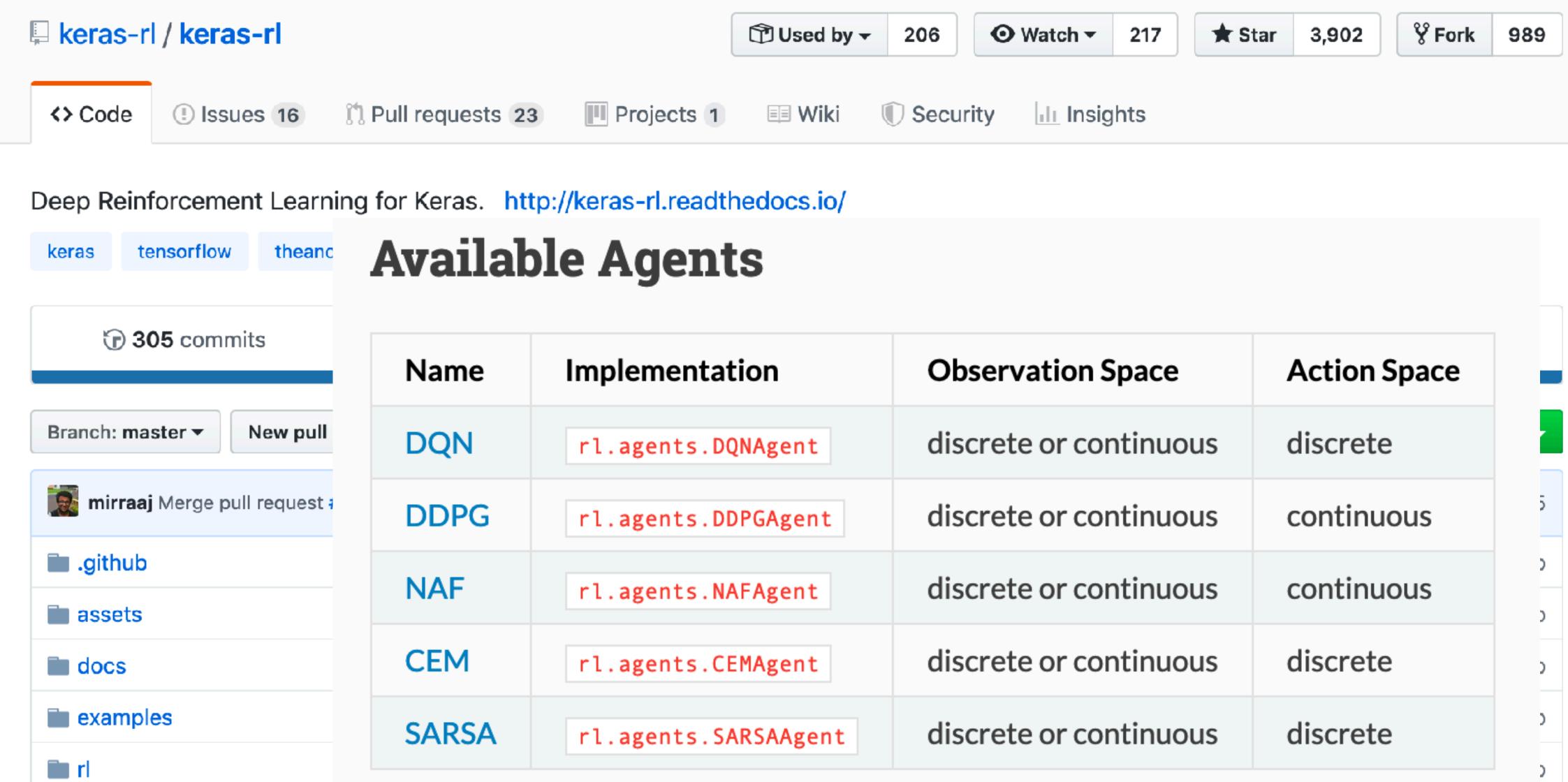
Markov chain. Source: Wikipedia





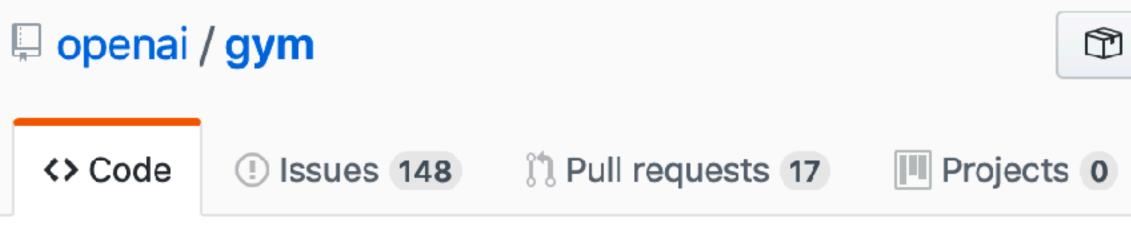
Can a DNN predict phase-space trajectories?



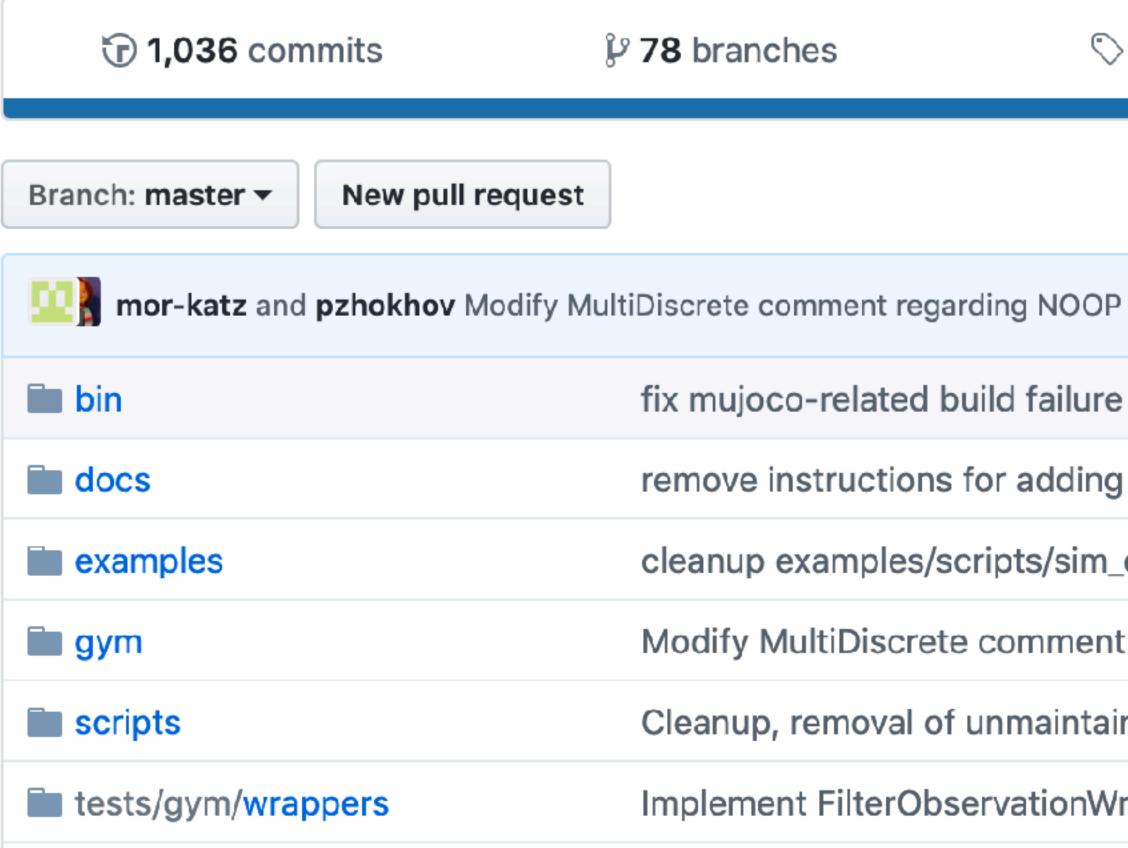


Keras-rl library

Observation Space	Action Space		
discrete or continuous	discrete		
discrete or continuous	continuous		
discrete or continuous	continuous		
discrete or continuous	discrete		
discrete or continuous	discrete		
	discrete or continuous discrete or continuous discrete or continuous		

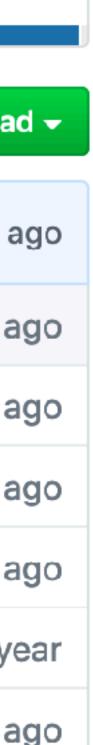


A toolkit for developing and comparing reinforcement learning



OpenAl Gym

Used by 🚽 5,5	92 🕑 Watch 🗸	939	r Star 17,11	11 ¥ Fork 4,610				
🗐 Wiki 🔘	Security	Insights						
algorithms. https://gym.openai.com/								
> 21 releases	LL 180	contributors	Ę	∱≊ View license				
	Create new file	Upload files	Find File	Clone or download -				
P (#1537)			Latest comm	nit c03ec69 2 days ago				
е				8 months ago				
g new environme	ents to gym (#145		2 months ago					
_env, make it py	thon3 compatible			4 months ago				
nt regarding NOC	OP (#1537)			2 days ago				
ined code (#838	6)			last year				
/rapper (#1500)				26 days ago				

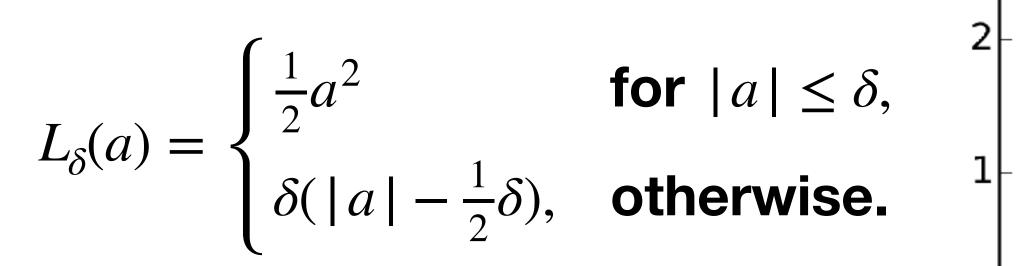


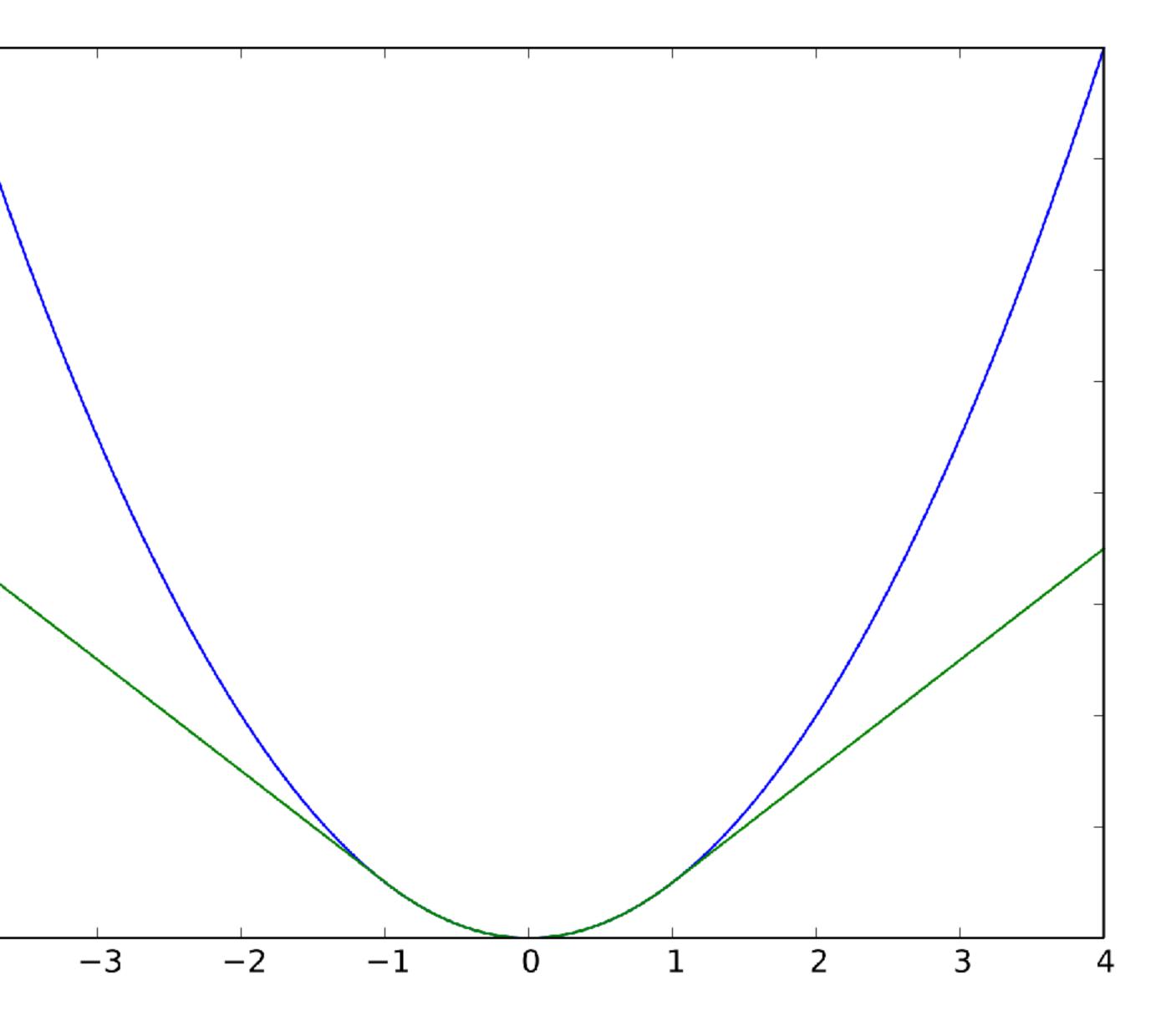
Modeling with Reinforcement Learning

Trajectory $\tau = (s_0, a_0, s_1, a_1, s_2, a_2, \dots, s_H, a_H, s_{H+1})$ **Reward** $R(\tau) = r_1 + r_2 + r_3 + \ldots + r_H + r_{H+1}$ **Expectation** $U(\theta) = \sum P(\tau, \theta)R(\tau)$ **Gradient** $\nabla_{\theta} \approx \hat{g} := \frac{\tau}{m} \sum_{i=1}^{m} \sum_{t=0}^{H} \nabla_{\theta} \log \pi_{\theta} \left(a_t^{(i)} \mid s_t^{(i)} \right) R(\tau^{(i)})$ **Update** $\theta \leftarrow \theta + \alpha \hat{g}$

Huber Loss

–4





CONTINUOUS CONTROL WITH DEEP REINFORCEMENT LEARNING

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver & Daan Wierstra Google Deepmind London, UK {countzero, jjhunt, apritzel, heess, etom, tassa, davidsilver, wierstra} @ google.com

Algorithm 1 DDPG algorithm

Randomly initialize critic network $Q(s, a | \theta^Q)$ and actor $\mu(s | \theta^\mu)$ with weights θ^Q and θ^μ . Initialize target network Q' and μ' with weights $\theta^{Q'} \leftarrow \theta^Q, \ \theta^{\mu'} \leftarrow \theta^{\mu}$ Initialize replay buffer R

for episode = 1, M do

Initialize a random process \mathcal{N} for action exploration Receive initial observation state s_1

for t = 1, T do

Execute action a_t and observe reward r_t and observe new state s_{t+1} Store transition (s_t, a_t, r_t, s_{t+1}) in R Sample a random minibatch of N trans Set $y_i = r_i + \gamma Q'(s_{i+1}, \mu'(s_{i+1} | \theta^{\mu'}))$ Update critic by minimizing the loss: Update the actor policy using the samp

$$\nabla_{\theta^{\mu}} J \approx \frac{1}{N} \sum_{i} \nabla_a Q(s, a | \theta^Q) |_{s=s_i, a=\mu(s_i)} \nabla_{\theta^{\mu}} \mu(s | \theta^{\mu}) |_{s_i}$$

Update the target networks:

 $\theta^{Q'}$

 $\theta^{\mu'} \cdot$

end for end for

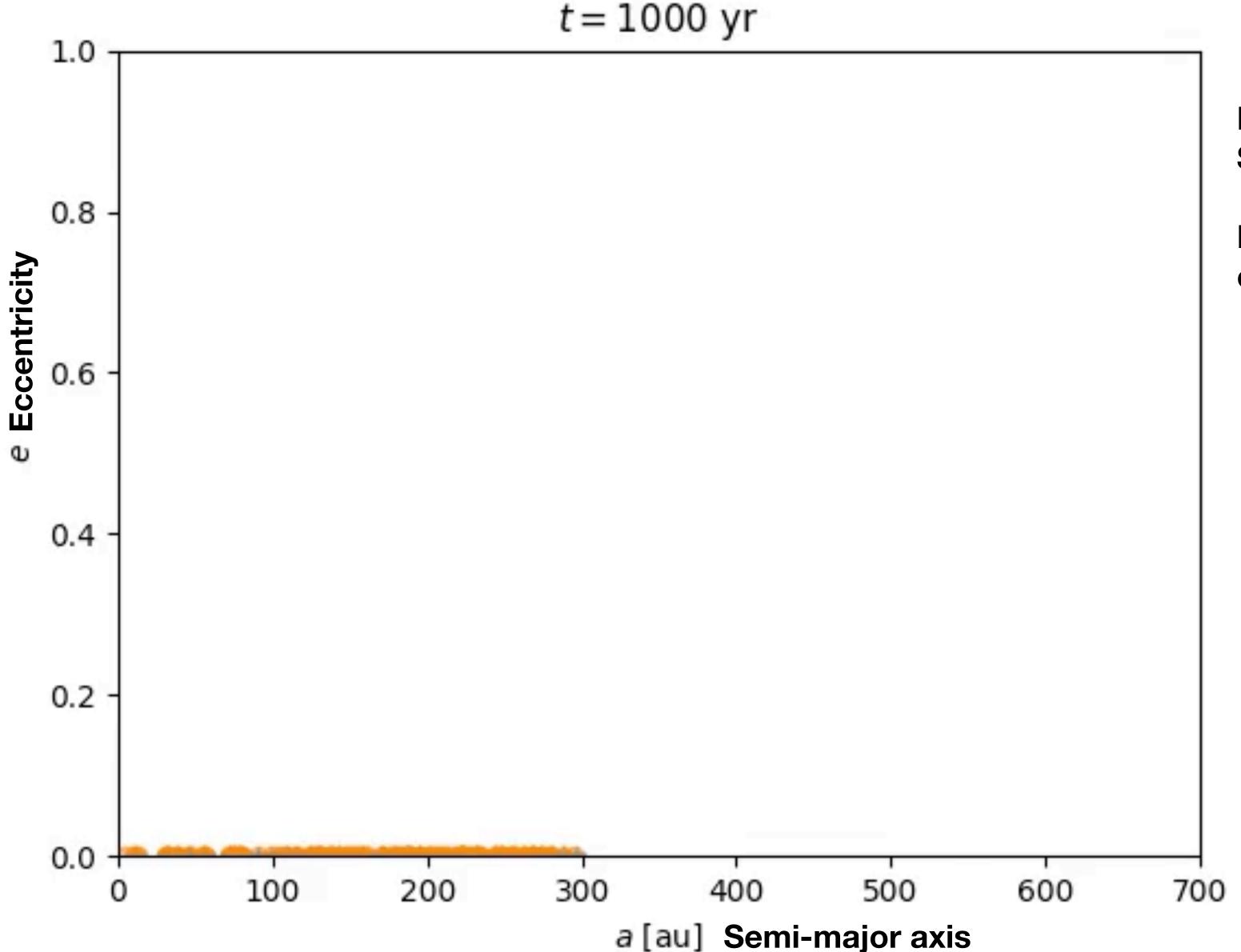
Select action $a_t = \mu(s_t | \theta^{\mu}) + \mathcal{N}_t$ according to the current policy and exploration noise

sitions
$$(s_i, a_i, r_i, s_{i+1})$$
 from R
 $\theta^{Q'}$)
 $L = \frac{1}{N} \sum_i (y_i - Q(s_i, a_i | \theta^Q))^2$
pled policy gradient:

$$egin{aligned} &- au heta^Q + (1- au) heta^{Q'} \ &- au heta^\mu + (1- au) heta^{\mu'} \end{aligned}$$

Lillicrap et al. (2015)

Comparing with N-body simulations

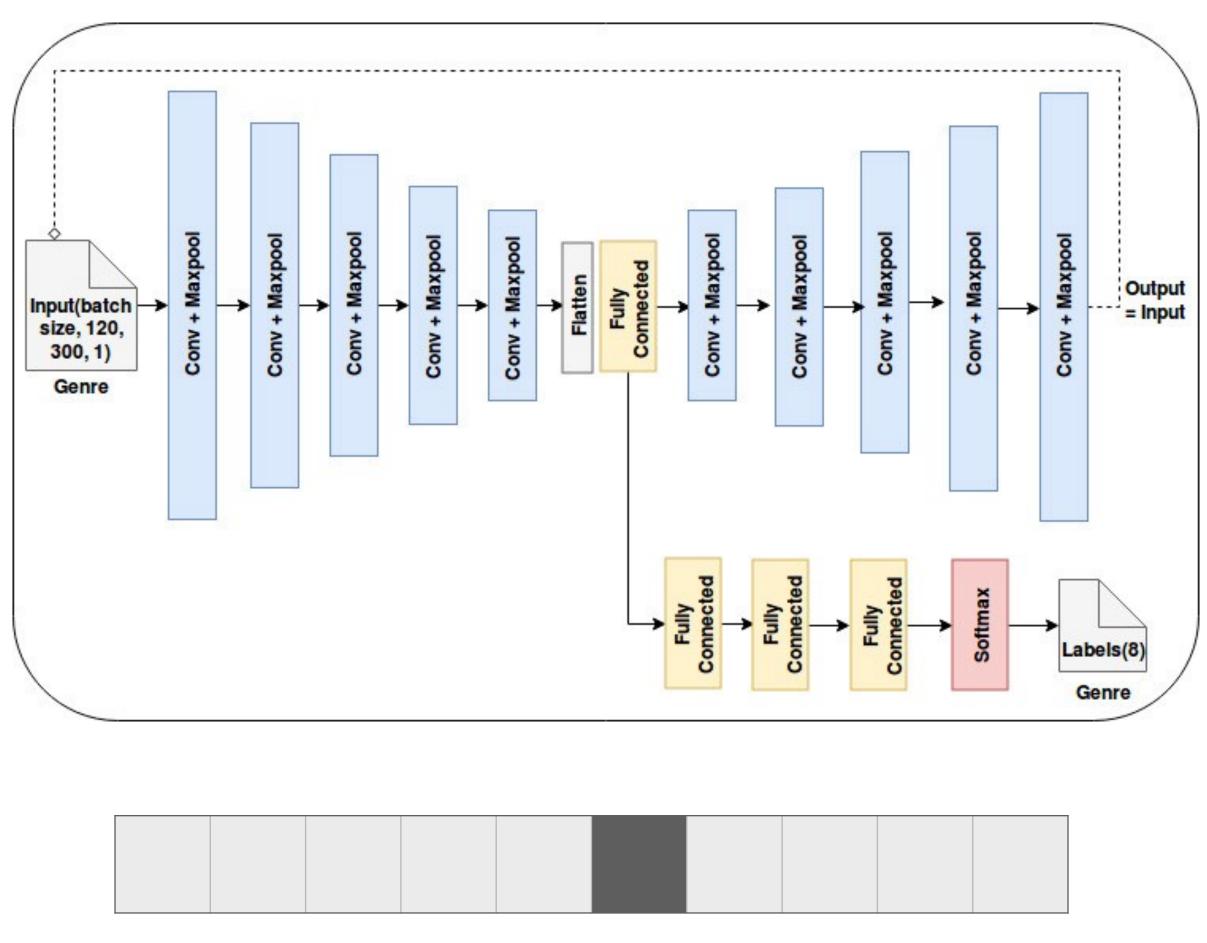


DQN managed to capture the basic physics Speed up by a factor of 10² - 10⁶

Predict accuracy depends on the resolution of the training data

Predict the future according to the past: pattern recognition

1	4	7							
2	5					Sem	i-maj	jor a	xes
3	6								
1	4	7							
2	5					Eco	centr	icitie	s
3	6								
1	4	7							
2	5					In	clina	tions	5
3	6								
1	4	7							
2	5				Pe	rturb	er di	stand	ces
3	6		 						



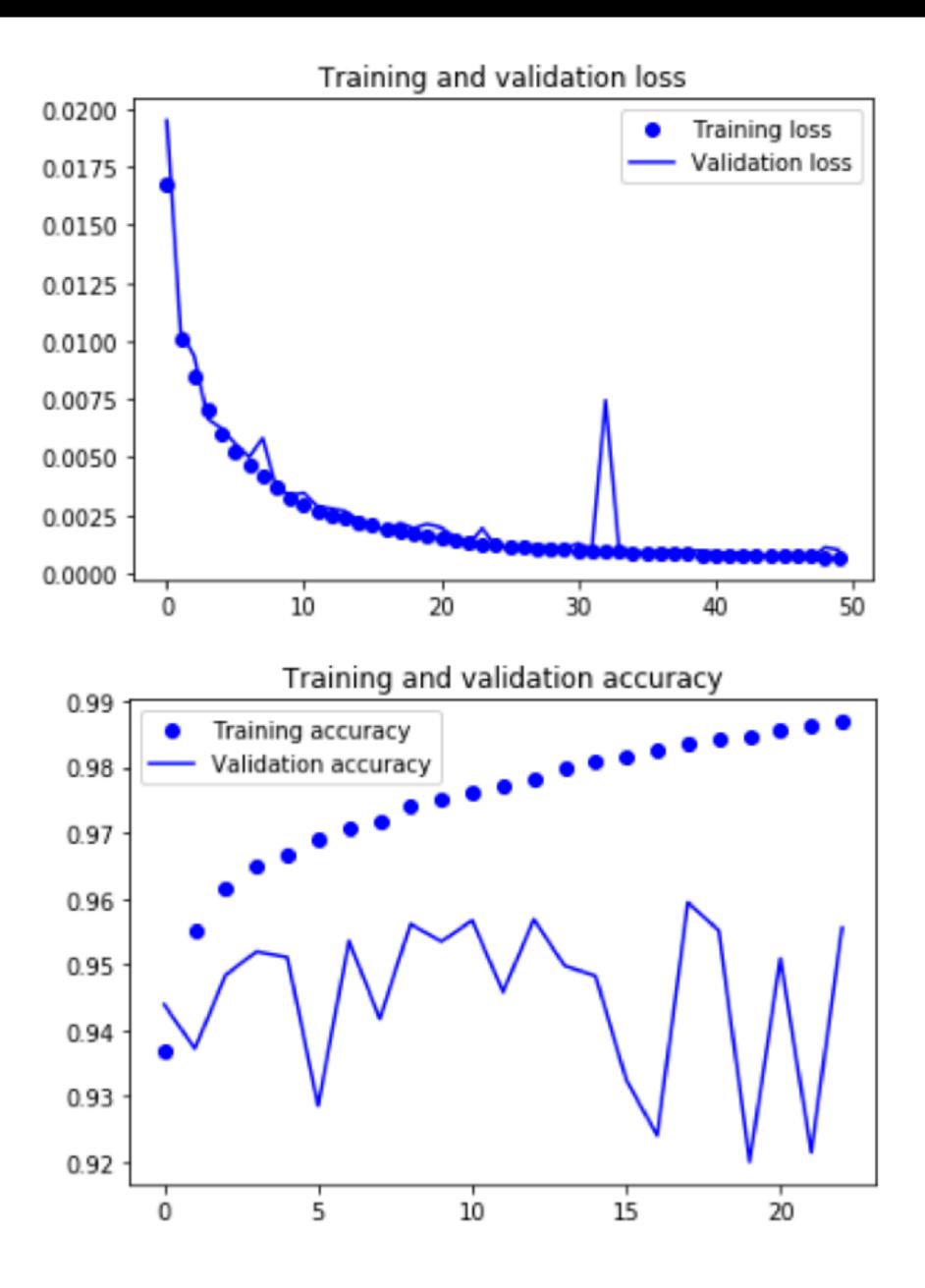
Variational Autoencoder as classifier

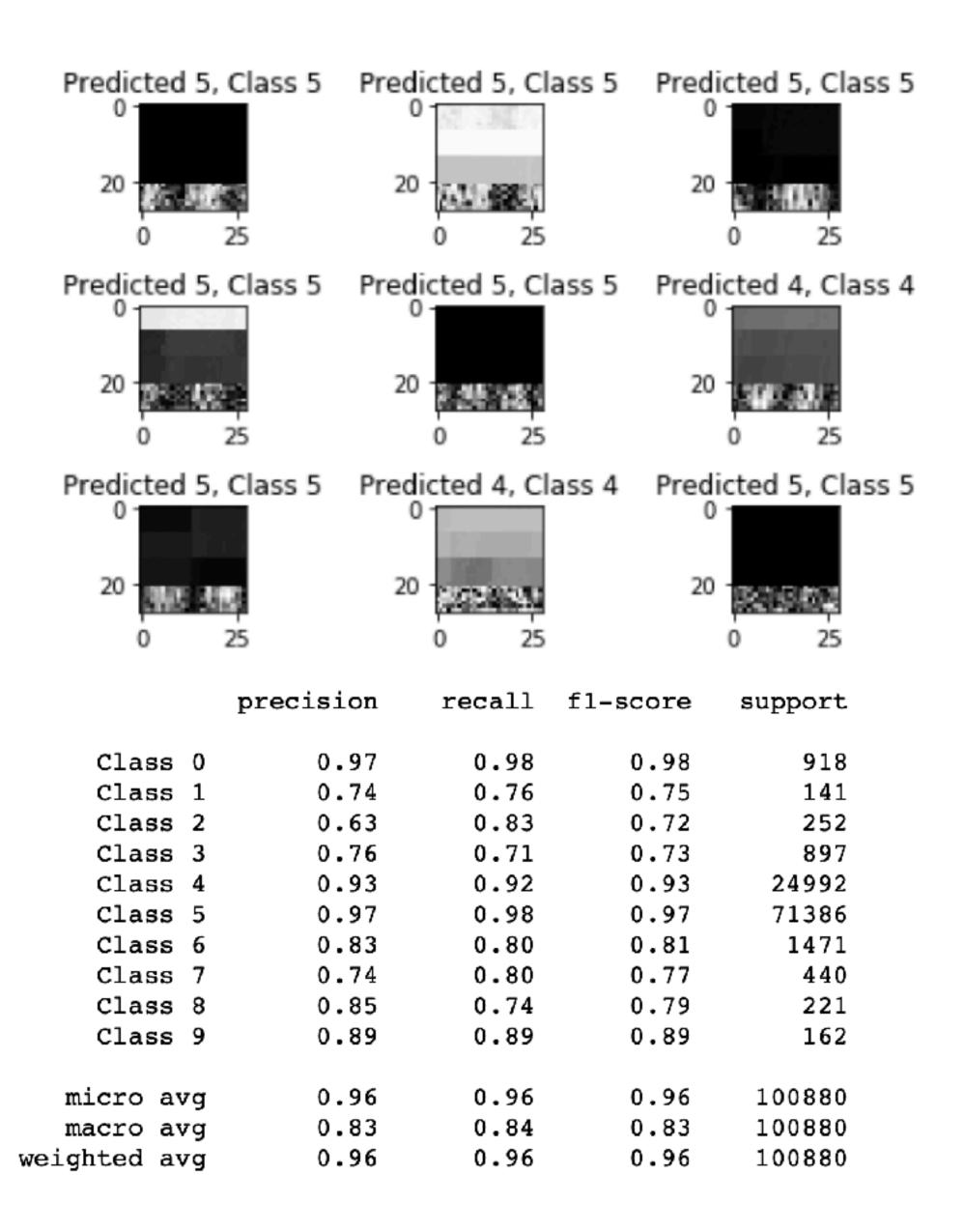
min

max

Label: the change of orbital eccentricity in the next 1 Myr

Predict the future according to the past: pattern recognition





Challenges:

- Underlying systems chaotic
- High dynamic range
- Extremely imbalance training samples
- Extremely long term prediction needed
- System not deterministic

Conclusions

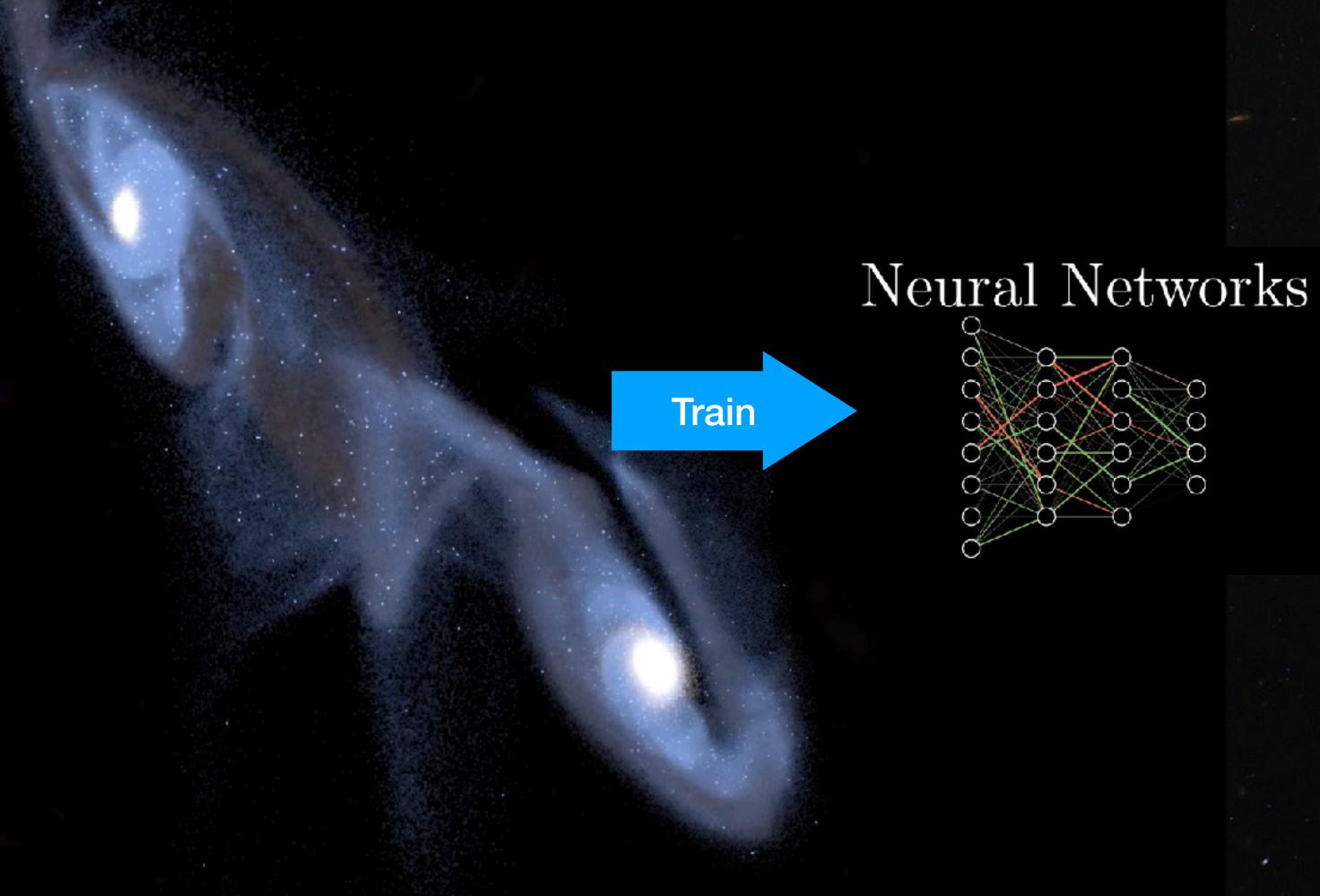
- Supervised learning is useful, but only for short-term prediction
- It is unusual to use RL for time series prediction, but it seems that RL can indeed learn physical laws
- Long term error inevitable, because we can't change the chaotic nature of the systems
- Multiple neural network architectures needed to collectively tackle the problem
- DL/RL can be useful for multi-scale modeling in physics

Bonus slides

Galaxy merger Simulations

Credit: Jeroen Bédorf

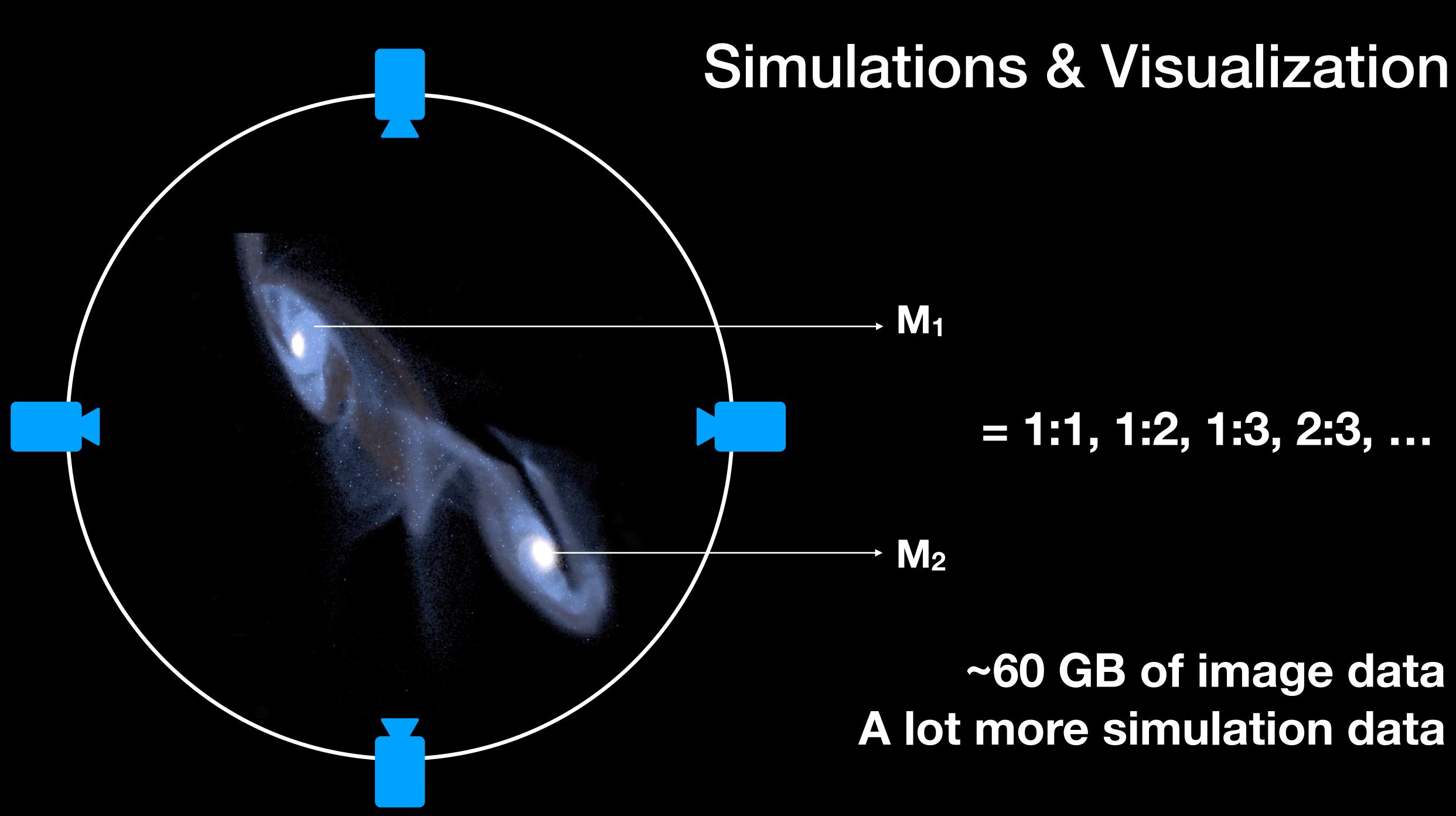
Simulation



Astrophysical problem → Pattern recognization problem

Observation

Predict



~60 GB of image data A lot more simulation data

