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CERN openlab
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Evaluate state-of-the-art technologies 
in a challenging environment and 
improve them

Test in a research environment today 
what will be used in many business 
sectors tomorrow
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CERN
International organisation 
close to Geneva, straddling 
Swiss-French border

Founded 1954
Facilities for fundamental 
research in particle physics
23 member states,
1.1 B CHF budget
3’197 staff, fellows, 
apprentices, …
13’128 associates

3

“Science for peace”

1954: 12 Member States

Members: Austria, Belgium, Bulgaria, Czech republic, Denmark, 
Finland, France, Germany, Greece, Hungary, Israel, Italy, 
Netherlands, Norway, Poland, Portugal, Slovak Republic, Spain, 
Serbia, Sweden, Switzerland, United Kingdom
Candidate for membership: Cyprus,	Slovenia
Associate members: India, Lithuania, Pakistan, Turkey, Ukraine
Observers: EC, Japan, JINR, Russia, UNESCO, United States of 
America
Numerous non-member states with collaboration agreements

2’531 staff members, 645 fellows, 
21 apprentices 

7’000 member states, 1’800 USA, 
900 Russia, 270 Japan, …
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The Large Hadron Collider (LHC)
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The Higgs Boson
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The Higgs Boson completes the Standard Model,
but the Model explains only about 5% of our Universe

What is the other 95% of the Universe made of?
How does gravity really works?

Why there is no antimatter in nature?
6
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Data Handling and Computation

Online	Triggers	and	
Filters

Offline	Reconstruction

Offiine Simulation

Offline	Analysis

Selection	&	
reconstruction

Event	simulation

Event	reprocessing

Batch	Physics	Analysis

Interactive	Analysis

Processed	data	
(active	tapes)
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ICT Infrastructure
~170	sites,	 42	countries
~800k	CPU	cores,	600	PB	of	storage
2	million	jobs/day
10-100	Gb	links

220-440 Gbps
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Conclusions
DNN training and inference will likely become important workflows for large 
experiments

Resources availability: driving factor of the size of the problem we can solve 
with DNNs

Complicated network optimizations/training have high computational cost
but…

DL development is accelerated by a diversified community (industry and 
society, applied and fundamental science)
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Some background

PERCEPTRON
Neural Networks

Decision Trees
Random Forests
BDT

SVM
Modern 
Deep 
Learning

Deep 
Learning at 
the LHC

~Now

NN @LEP BDT 
@SLAC

Image from  “Deep Learning”, I. GoodFellow, MIT press book
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Why? …Big Data

Accelerators infrastructure
9600 magnets for Beam Control
1232 superconducting dipoles for bending

Experiments (detectors & physics data)
330 PB of collisions data stored by end 2018

The computing infrastructure

LHC data is multi-structured, hybrid

LHC is entering the Big Data era
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Why? …New Challenges
Next generation colliders will require larger, highly granular detectors that will 

generate huge particle data rates O(100 TB/s)

CMS simulation
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How? … Deep Learning

DL can recognize patterns in large complicated data sets

Re-cast physics problems as “DL problems”

Adapt DL to HEP requirements

Adopting ”new” computing models

B. Hooberman, S.V.  
et al. (NIPS 2017)
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Examples
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The problem:
Assume data sample follows pdata distribution 
Can we draw samples  from distribution  pmodel such that pmodel ≈ pdata?

A  well known solution:
Assume some form for pmodel (using prior knowledge, parameterized by θ)
Find the maximum likelihood estimator

15

Generative models

draw samples from pθ�

Generative	models	don’t	assume	any	prior	form	for		pmodels

Extract	meaningful	representation	from	training	data



16

Deep Generative Models
Internal representations learned by shallow systems are simple

àDeep Generative Models
§ Allow higher levels of abstractions 
§ Improve generalisation and transfer

à Multiple applications
Discovery
Anomaly Detection
Planning
Transfer Learning
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Generative Models Zoo

Deep 
Generative 
Models

Fully-observed

Latent variables

Pictures from Danilo Rezende’s
Tutorial on Deep Generative Models
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Generator generates data from random noise
Generator learning is supervised by the discriminator
network
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Two networks competing with each other

Generative Adversarial Networks
arXiv:1406.2661	

Image source

The forger/detective case
Forger shows its Monalisa to the detective
Detective says it is fake
Forger makes new Monalisa based on feedback
Iterate until detective is fooled

Arxiv:1701.00160



19

How well 
does it 
work?
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Performance evaluation

Deployment in scientific domains requires robust performance studies
We need to assess the difference between  model PDF and real PDF 

Mixing and coverage (diversity)
Saliency
Mode collapse or mode dropping
Overfitting (has the network memorized samples?) 

Need quantities that are invariant to small translation, rotation, intensity changes 
Define a way to map input into a feature space

Kullback-Leibler Divergence
Inception score, Fréchet Inception Distance
Maximum Mean Discrepancy 
Structural Similarity Index 

+ Physics Quantities Validation



21

Fast simulation in High Energy 
Physics

Monte Carlo simulation is a major workload in 
terms of computing resources.
Generative Models are a generic approach to 
replace expensive calculations 
Inference is faster than Monte Carlo approach
Industry building highly optimized software, 
hardware, and cloud services.

Numerous R&D activities (LHC and beyond)

21

MC - related
WLCG Wall Clock time for the ATLAS experiment

21

Time	to	create	an	electron	shower

Method Machine Time/Shower
(msec)

Full	Simulation	
(geant4)

Intel	Xeon	Platinum	
8180 17000

3DGAN
(batch	size	128)

Intel	Xeon	Platinum	
8160	(TF	1.12)

1

S.V.,	ACAT	2019
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Detector output as 3D image
Array of absorber material and silicon sensors

22

25 25
25

http://cds.cern.ch/record/2254048#

CLIC is a CERN project for a linear 
accelerator of electrons and positrons to TeV
energies
Electromagnetic calorimeter design

Sparse images
Highly segmented (pixelized)
Large dynamic range
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Generator

23

3D convolutional GAN

Discriminator

~1M parameters
Total model Size: 3.8MB
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Conditional training, Custom losses
Performance validation

Convergence and discriminator performance
Comparison to Monte Carlo

Shower Shapes, Sampling Fraction
Correlations, Sparsity, etc..

“In-house inception score”
TriForce(1) classification and regression on 
GAN/GEANT4

Image Quality Analysis

3DGAN 
performance

(1)Matt	Zhang,	
https://github.com/BucketOfFish/Triforce_CaloML
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Generated events

Geant4 GAN	

Ep=189	GeV,	α=	63°

GAN	generated	electron	
shower
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G4
GAN  (MAE=71.790329)

● Transfer learning from 100-200 
GeV pre-trained network

● Double training dataset statistics, 3 
epochs training

Transfer learning: extending the 
energy range

Longitudinal	
shower width

2-500	GeV Improved correlation description!

Transverse	shower width

Error on	sampling fraction
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Structural Similarity Index (SSIM) [4] is used to assess similarity between
images 

Tipically used in denoising applications
Measure diversity in GAN generated images

Sample diversity
Structural Similarity Index

SSIM	as	training	progresses

L G4	vs	G4 GAN	vs	GAN

1 0.94 0.95

1e-2 0.21 0.25

1e-4 0.045 0.061

1e-6 0.045 0.051

E=150	GeV,	orthogonal	 incident	angle
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Other applications in fast simulation

Generative models for ALICE TPC simulation (ACAT2019)

Conditional Wasserstein GANs for fast simulation of electromagnetic showers in 
a CMS HGCAL prototype (IML WG 04/18)

Variational AutoEncoders to simulate ATLAS LAr calorimeter (PASC18)

Wasserstein GANs to generate high-level physics variables based on Monte 
Carlo ttH (superfast-simulation) (IML WG 04/18)

Particle-GAN for Full Event Simulation at the LHC (ACAT2019) 
Refining Detector Simulation using Adversarial Networks (IML WG 04/

18)

Model-Assisted GANs for the optimisation of simulation parameters  (IML WG 04/19)
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AutoEncoders &
Variational AutoEncoders

AEs learn how to describe training 
dataset in latent space

Data compression, dimensionality reduction 
(PCA) and de-noising 

Variational AEs have added 
constraints on the encoded 
representations 

Learn latent model then sample from it

Many applications at the LHC
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Triggers: real time event selection

We can process only a minimal fraction of collider data
Keep only the interesting events
Sophisticated studies to optimise trigger algorithms for specific physics processes
We don’t know what unknown physics looks like! 
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VAE for new physics mining

Classical strategy uses a very loose selection 
1M Standard Model events  per day
Will not scale 

Physics mining as an anomaly detection problem

O. Cerri, ACAT2019

Use anomaly detection tools
Train a VAE on known physics

Monte Carlo data
Real detector data 

Run it in real time and store 
only “anomalies”
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Selecting the unknown!

Create a dataset of anomalous events
Can probe large range of processes
Alternative strategy, parallel to
canonical approaches
Might open new physics directions

VAE as model-independent new physics trigger
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Pattern recognition in HEP
Particle Trajectory Reconstruction

J-R. Vlimant, CERN-DS seminar

Particle trajectory bended in a solenoid magnetic field
Need curvature to measure momentum

Particle ionize silicon sensors arranged in concentric layers
Thousands of sparse hits
Many hits are uninteresting
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CNN used for  activity segmentation and detector hits classification

AutoEncoders for tracking
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Hopefield network  http://inspirehep.net/record/300646/

CNN in NOVA  https://arxiv.org/abs/1604.01444

HEP.TrkX : https://heptrkx.github.io/

TrackML : https://tinyurl.com/y84yd5hn

Quantum annealing!
Quadratic Unconstrained Binary Optimisation (QUBO) can 
be mapped to an Ising Hamiltonian with change of variable 
{0,1} ßà{-1,1}

A major challenge after LHC upgrade

More examples

TrackML
challenge	on	
kaggle

J.	R.	Vlimant,	ACAT2019
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A quantum advantage for ML?
Quantum linear algebra is generally  faster than classical 
counterpart
Some standard ML techniques estimate the ground state of 
Hamiltonians 
ML algorithms have some tolerance to errors
Specific quantum techniques can be exploited to bring further 
improvement

36
Biamonte et al. arxiv: 1611.09347
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Quantum Support Vector Machine

Quantum SVM for ttH (H → !!) classification
QSVM is simulated on IBM Qiskit simulator
Entanglement is used to encode relationships between features 

Apply PCA to input data features
Reduced from 45 to 8,10 or 20  (limited by number of qubits) 

Running full training with quantum simulators requires large 
computing resources

Memory increases with qubit, training events and complexity

Quantum Machine Learning are among the first applications to be implemented on 
near-term devices

37
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Quantum GAN
Generative Adversarial Networks are among the most 
interesting models in classical machine learning

Quantum GAN would have more representational power than 
classical GAN
Different hybrid classical-quantum algorithms for generative models 
exist

i.e quantum Variational Auto-Encoders on D-Wave annealer

Train a quantum GAN to generate  few-pixels  images
Currently investigating two possible approaches:

A hybrid schema with a quantum generator learning the target PDF 
using either a classical network or a variational quantum circuit as a 
discriminator (Variational Quantum Generator) 
Full quantum adversarial implementation (quGAN)

38

quGAN
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Conclusions …again
DNN training and inference will likely become important workflows for large 
experiments

Resources availability: driving factor of the size of the problem we can solve 
with DNNs

Complicated network optimizations/training have high computational cost
but…

DL development is accelerated by a diversified community (industry and 
society, applied and fundamental science)

So what is the HEP community looking into?
Integrate new frameworks in “classical” software stacks
Expand a pure HTC approach to HPC and Cloud environments
Improve usability and deployment
Long term innovation such as Quantum Computing

DL lives in a diversified ecosystem that evolves extremely rapidly
R&D and collaboration with industry and other communities is essential
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Thanks!
Questions?

https://openlab.cern


