

Deep Learning in High Energy Physics

Examples from the LHC

Sofia Vallecorsa – June 20th, 2019

openlab.cern

CERN openlab

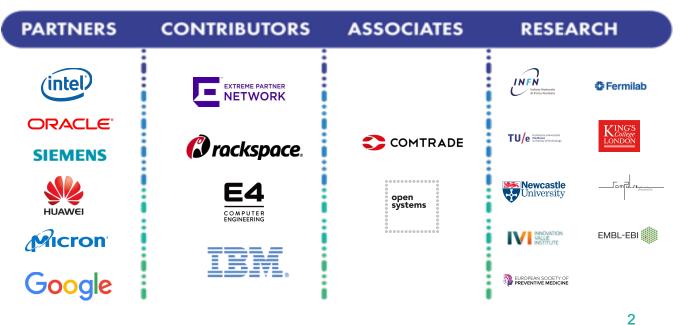
A science – industry partnership to drive R&D and innovation

Evaluate **state-of-the-art technologies** in a challenging environment and improve them

Test in a **research environment** today what will be used in many business sectors tomorrow

Training

Dissemination and outreach



CERN

International organisation close to Geneva, straddling Swiss-French border

Founded 1954

Facilities for **fundamental research in particle physics**

23 member states, 1.1 B CHF budget

3'197 staff, fellows, apprentices, ...

13'128 associates

, CERN

"Science for peace"

1954: 12 Member States

Members: Austria, Belgium, Bulgaria, Czech republic, Denmark, Finland, France, Germany, Greece, Hungary, Israel, Italy, Netherlands, Norway, Poland, Portugal, Slovak Republic, Spain, Serbia, Sweden, Switzerland, United Kingdom Candidate for membership: Cyprus, Slovenia Associate members: India, Lithuania, Pakistan, Turkey, Ukraine Observers: EC, Japan, JINR, Russia, UNESCO, United States of America

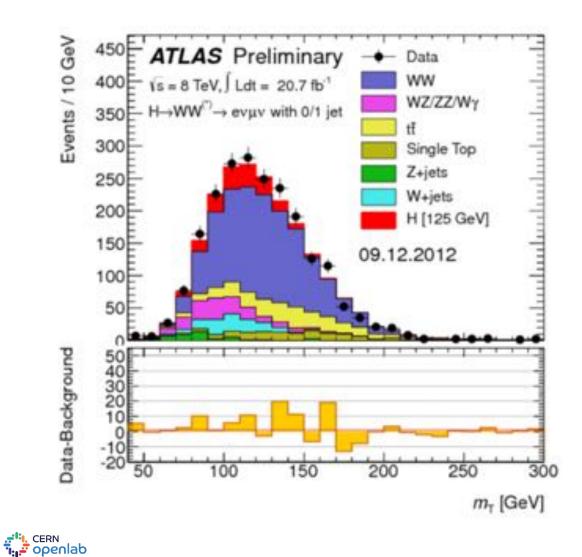
Numerous non-member states with collaboration agreements

2'531 staff members, 645 fellows, 21 apprentices

7'000 member states, 1'800 USA, 900 Russia, 270 Japan, ...

The Large Hadron Collider (LHC)

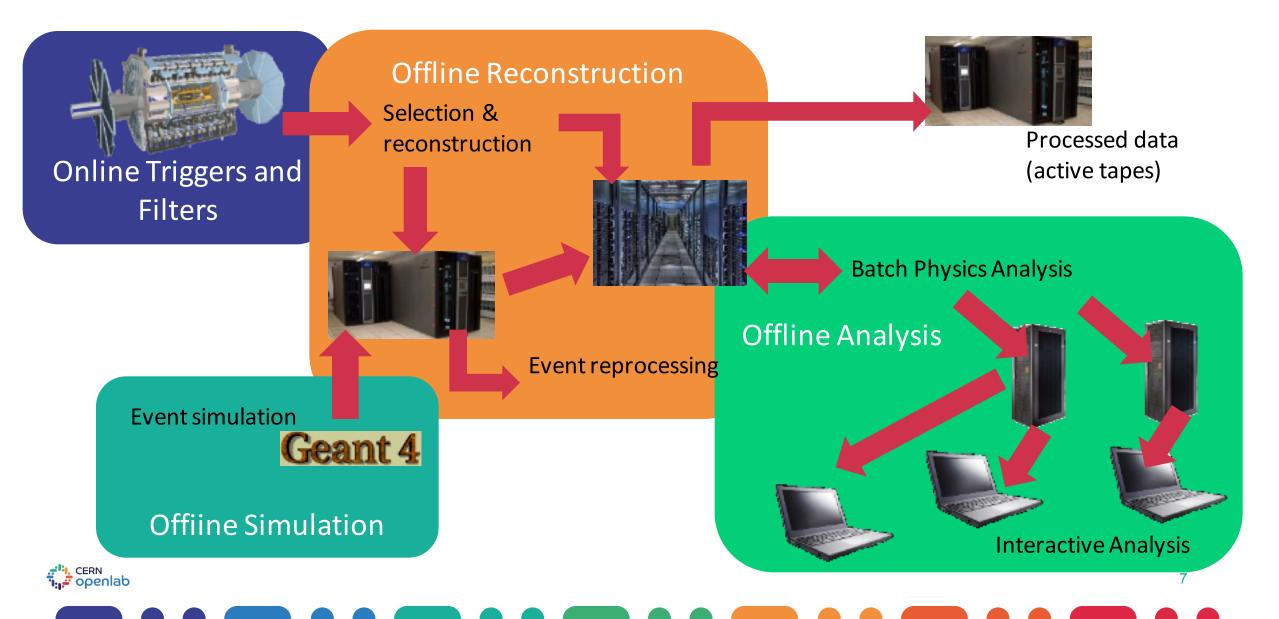
The Higgs Boson



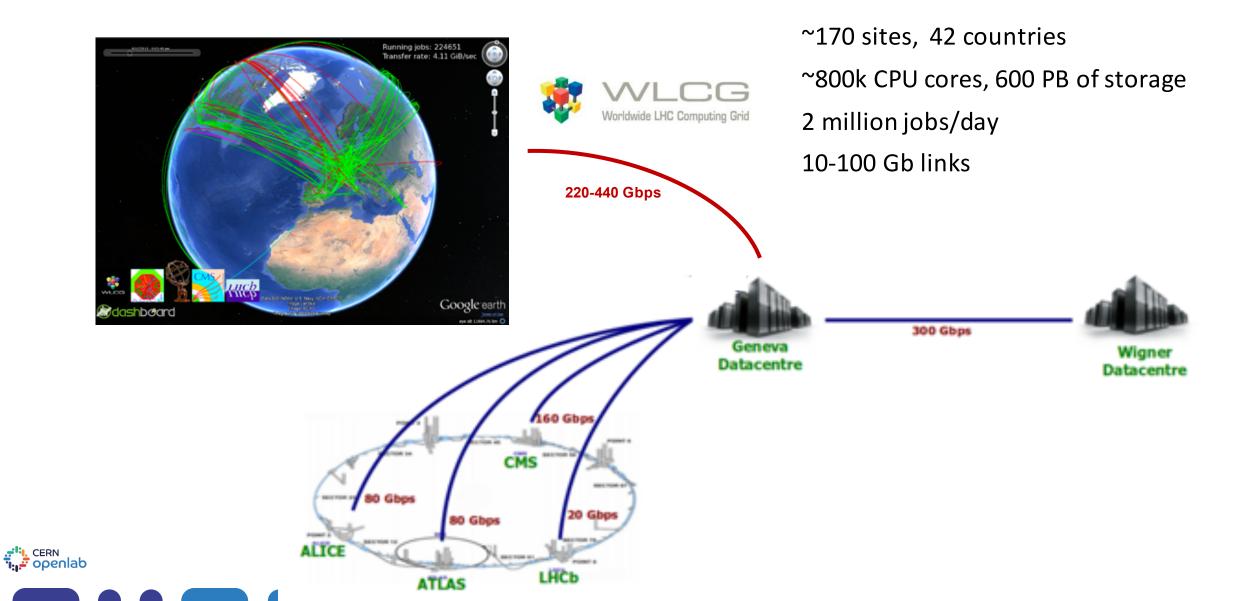
The Higgs Boson completes the Standard Model, but the Model explains only about 5% of our Universe

What is the other 95% of the Universe made of? How does gravity really works? Why there is no antimatter in nature?

Data Handling and Computation



ICT Infrastructure



Conclusions

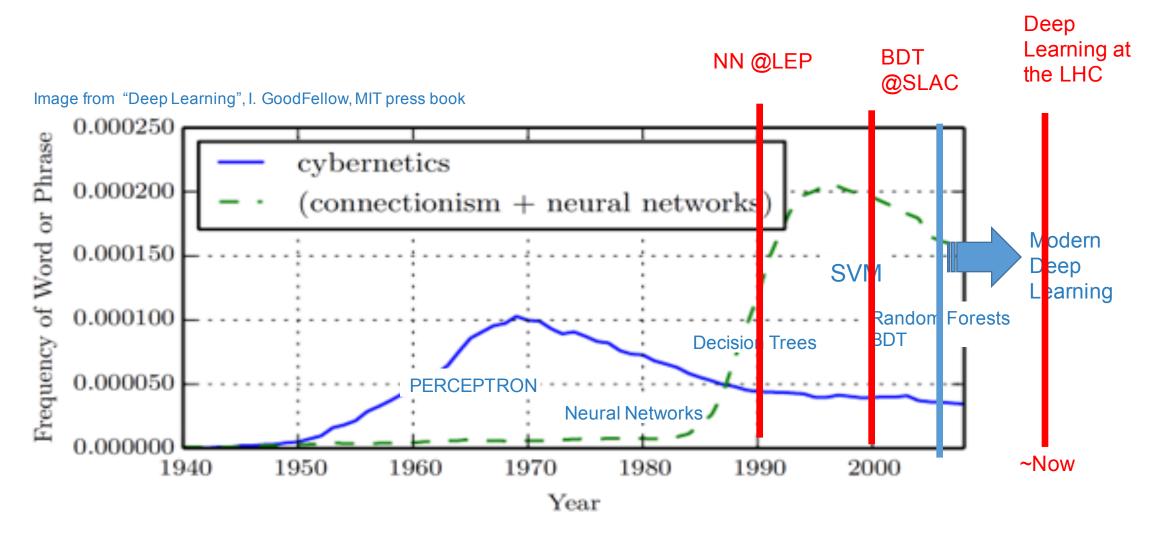
DNN training and inference will likely become **important workflows** for large experiments

Resources availability: driving factor of the size of the problem we can solve with DNNs

Complicated network optimizations/training have high computational cost but...

DL development is accelerated by a **diversified community** (industry and society, applied and fundamental science)

Some background

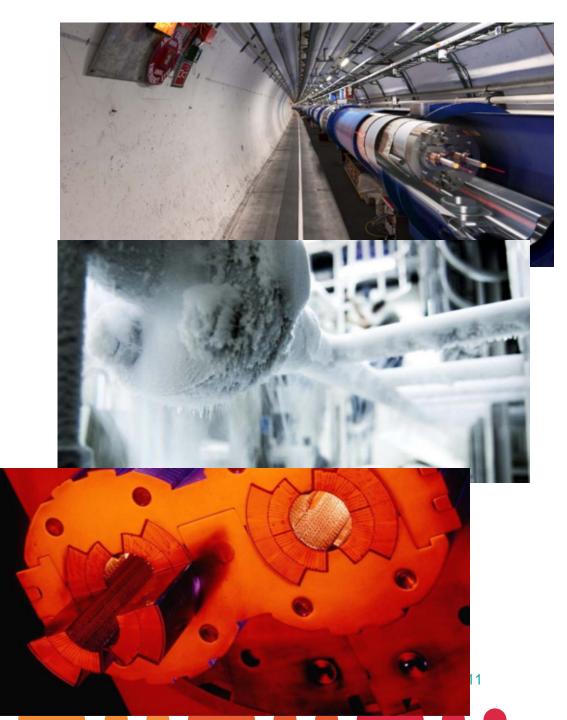


Why? ...Big Data

LHC is entering the Big Data era

Accelerators infrastructure

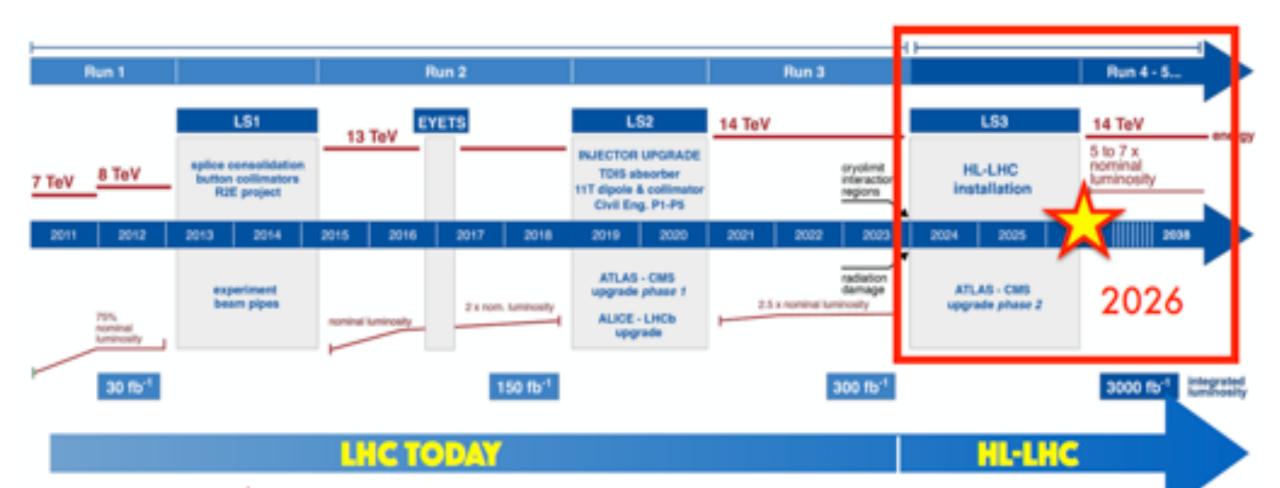
9600 magnets for Beam Control 1232 superconducting dipoles for bending Experiments (detectors & physics data) 330 PB of collisions data stored by end 2018 The computing infrastructure LHC data is multi-structured, hybrid



CERN III CERN

Why? ... New Challenges

Next generation colliders will require larger, highly granular detectors that will generate huge particle data rates O(100 TB/s)



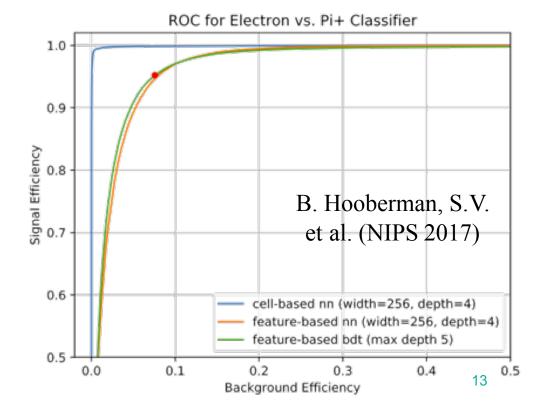
How? ... Deep Learning

DL can recognize patterns in large complicated data sets

Re-cast physics problems as "DL problems"

Adapt DL to HEP requirements

Adopting "new" computing models



Examples

Generative models

The problem:

CERN openlab

Assume data sample follows p_{data} distribution

Can we draw samples from distribution p_{model} such that $p_{model} \approx p_{data}$?

A well known solution:

Assume some form for p_{model} (using prior knowledge, parameterized by θ) Find the maximum likelihood estimator

 $\theta^* = \arg \max_{\theta} \sum_{\mathbf{x} \in \mathcal{D}} \log(p_{\text{model}}(\mathbf{x}; \theta)) \qquad \text{draw samples from } p_{\theta^*}$

Generative models don't assume any prior form for p_{models} Extract meaningful representation from training data

Deep Generative Models

Internal representations learned by **shallow** systems are **simple**

- \rightarrow Deep Generative Models
 - Allow higher levels of abstractions
 - Improve generalisation and transfer
- \rightarrow Multiple applications

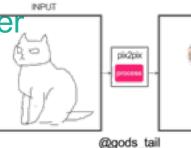
Discovery

Anomaly Detection

Planning

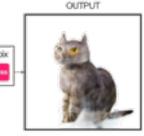
Transfer Learning

, CERN 1;, openlab



INPUT

lù n



OUTPUT

Vitaly Vidmirov @vvid

lvy Tasi @ivymyt @ka92 16

pix2pix

#edges2cats [Christopher Hesse]

Deep Gaussian

Process

Recurrent Gaussian

GP State space model

Deep Nonparametic Continuous

Nonlinear Gaussian

Deep Latent Gaussian

Deep Parametric Continuous

Nonlinear factor

belief network

(VAE, DRAW)

Deep

.

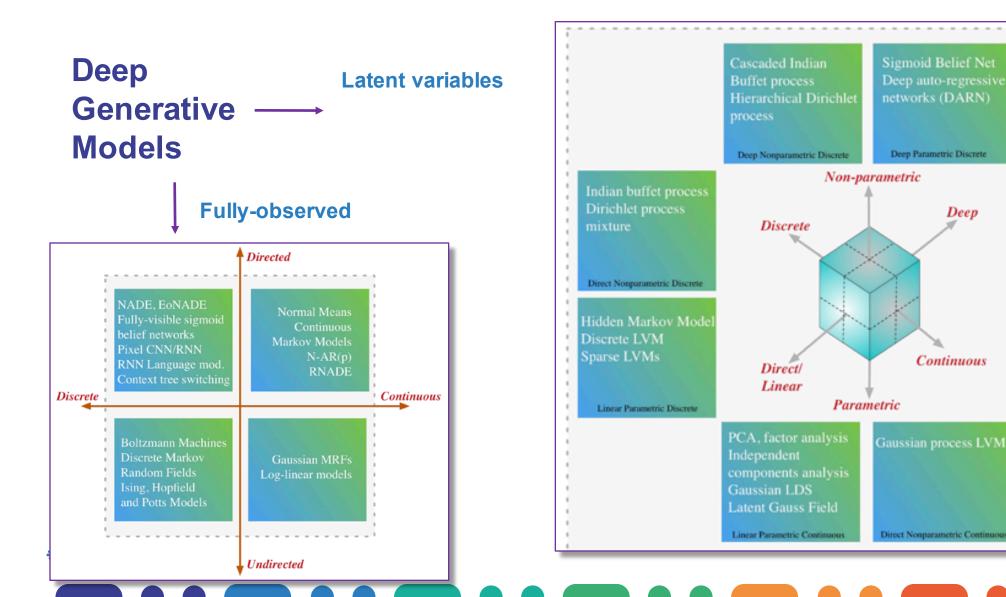
.

÷

.

÷.

Generative Models Zoo



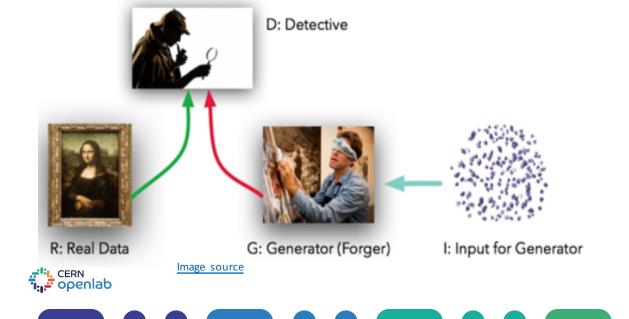
arXiv:1406.2661

Generative Adversarial Networks

Two networks competing with each other

Generator generates data from random noise Generator learning is supervised by the **discriminator** network

Arxiv:1701.00160



The forger/detective case Forger shows its Monalisa to the detective Detective says it is fake Forger makes new Monalisa based on feedback Iterate until detective is fooled

lan Goodfellow @goodfellow_ian

4 years of GAN progress (source: eff.org/files/2018/02/ ...)

7:26 pm - 2 Mar 2018

Performance evaluation

Deployment in scientific domains requires robust performance studies

We need to assess the difference between model PDF and real PDF

Mixing and coverage (diversity)

Saliency

CERN openlab

- Mode collapse or mode dropping
- Overfitting (has the network memorized samples?)

Need quantities that are invariant to small translation, rotation, intensity changes

- Define a way to map input into a feature space
 - Kullback-Leibler Divergence
 - Inception score, Fréchet Inception Distance
 - Maximum Mean Discrepancy
 - Structural Similarity Index

+ Physics Quantities Validation

Fast simulation in High Energy Physics

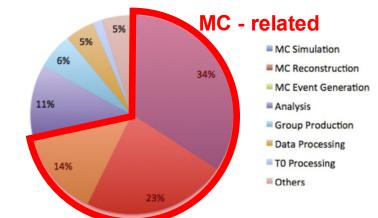
Monte Carlo simulation is a **major workload** in terms of computing resources.

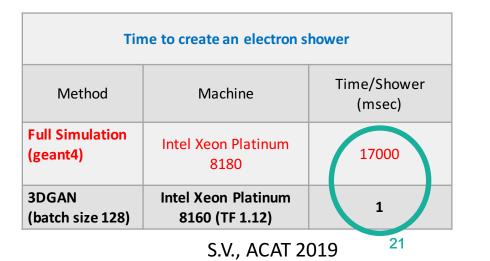
Generative Models are a **generic approach** to replace expensive calculations

Inference is **faster** than Monte Carlo approach

Industry building highly optimized software, hardware, and cloud services.

Numerous R&D activities (LHC and beyond)





WLCG Wall Clock time for the ATLAS experiment

Detector output as 3D image

Array of absorber material and silicon sensors

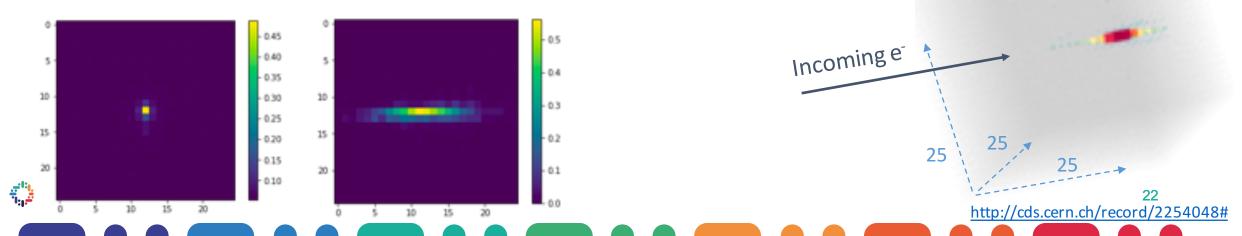
CLIC is a CERN project for a linear accelerator of electrons and positrons to TeV energies

Electromagnetic calorimeter design

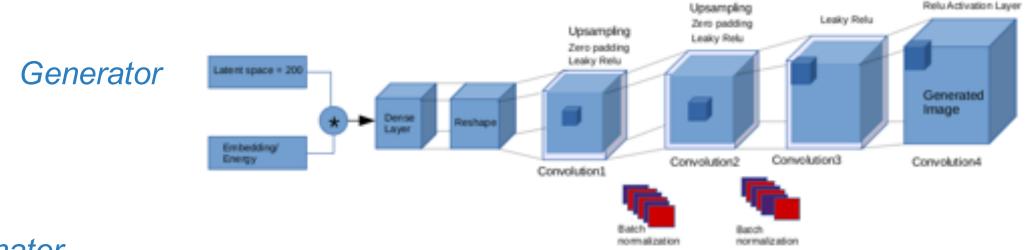
Sparse images

Highly segmented (pixelized)

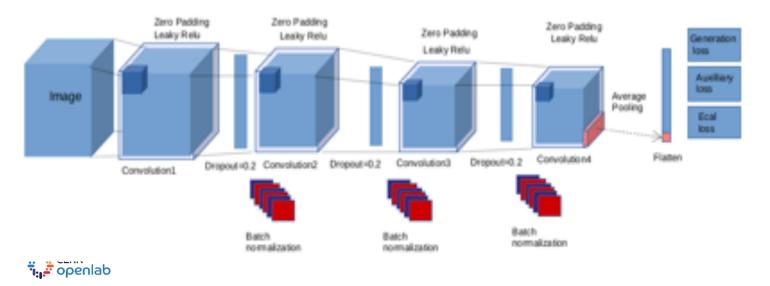
Large dynamic range



3D convolutional GAN



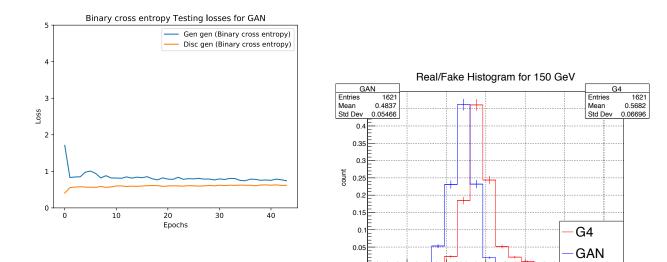
Discriminator



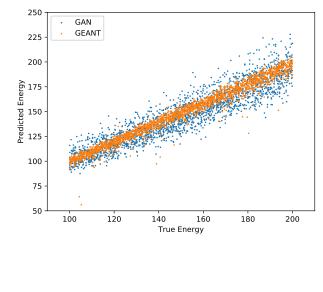
~1M parameters Total model Size: 3.8MB

3DGAN performance

- Conditional training, Custom losses
- Performance validation
 - Convergence and discriminator performance
 - **Comparison to Monte Carlo**
 - Shower Shapes, Sampling Fraction Correlations, Sparsity, etc..
 - "In-house inception score"
 - TriForce⁽¹⁾ classification and regression on GAN/GEANT4
 - Image Quality Analysis



Energy Predictions from Regression Nets for GAN and GEANT4 Samples

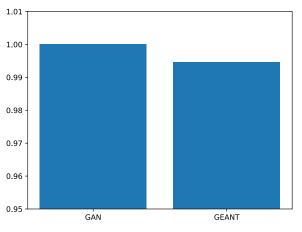


Accuracy of Classification Nets on GAN and GEANT4 Electron Samples

0.6

1.2 Real/Fake

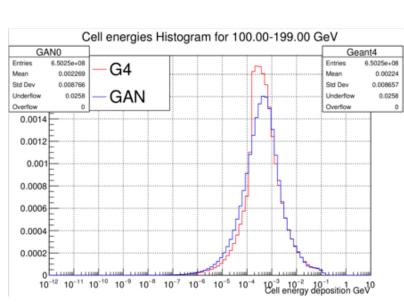
24



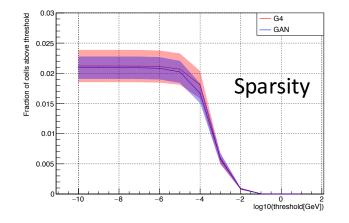
⁽¹⁾Matt Zhang, https://github.com/BucketOfFish/Triforce CaloML

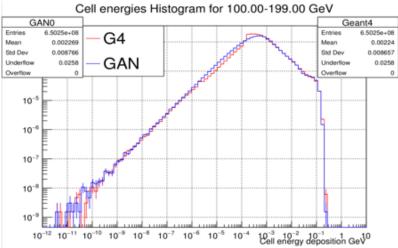
Generated events

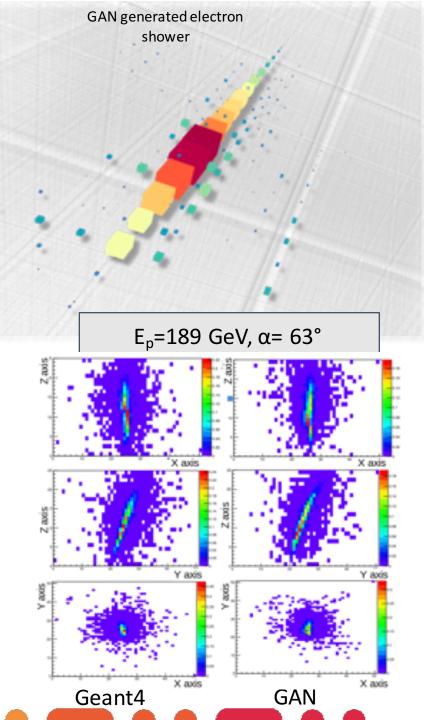
Dynamic range and sparsity



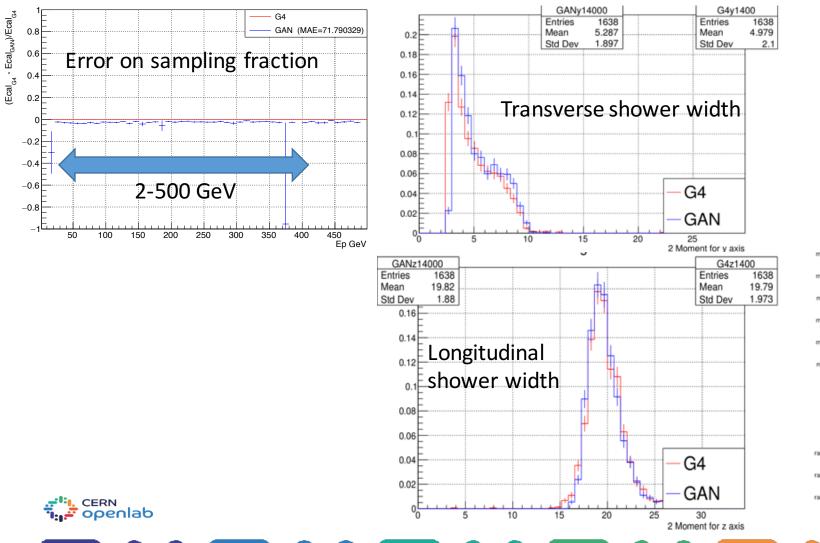
Agreement to Monte Carlo across seven orders of magnitude





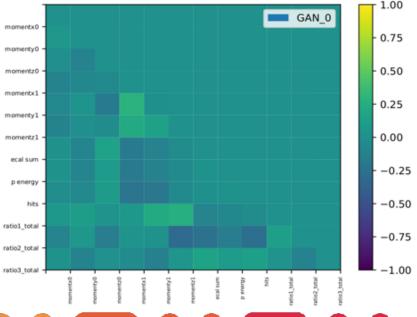


Transfer learning: extending the energy range



- Transfer learning from 100-200 GeV pre-trained network
- Double training dataset statistics, 3 epochs training

Improved correlation description!



Sample diversity

Structural Similarity Index

Structural Similarity Index (SSIM) [4] is used to assess similarity between images

Tipically used in denoising applications

Measure **diversity** in GAN generated images

E=150 GeV, orthogonal incident angle

L	G4 vs G4	GAN vs GAN
1	0.94	0.95
1 e-2	0.21	0.25
1e-4	0.045	0.061
1 e-6	0.045	0.051
ille obernao		

$$l(x, y) = \frac{2\mu_x \mu_y + C_1}{\mu_x^2 + \mu_y^2 + C_1},$$

$$c(x, y) = \frac{2\sigma_x \sigma_y + C_2}{\sigma_x^2 + \sigma_y^2 + C_2},$$

$$s(x, y) = \frac{\sigma_{xy} + C_3}{\sigma_x \sigma_y + C_3}$$

 $SSIM(x, y) = [l(x, y)]^{\alpha} \cdot [c(x, y)]^{\beta} \cdot [s(x, y)]^{\gamma}$

Other applications in fast simulation

- Generative models for ALICE TPC simulation (ACAT2019)
- Conditional Wasserstein GANs for fast simulation of electromagnetic showers in a CMS HGCAL prototype (IML WG 04/18)
- Variational AutoEncoders to simulate ATLAS LAr calorimeter (PASC18)
- Wasserstein GANs to generate high-level physics variables based on Monte Carlo ttH (superfast-simulation) (IML WG 04/18)
- Particle-GAN for Full Event Simulation at the LHC (ACAT2019)
- Refining Detector Simulation using Adversarial Networks (IML WG 04/
- 18)
- Model-Assisted GANs for the optimisation of simulation parameters (IML WG 04/19)

AutoEncoders & Variational AutoEncoders

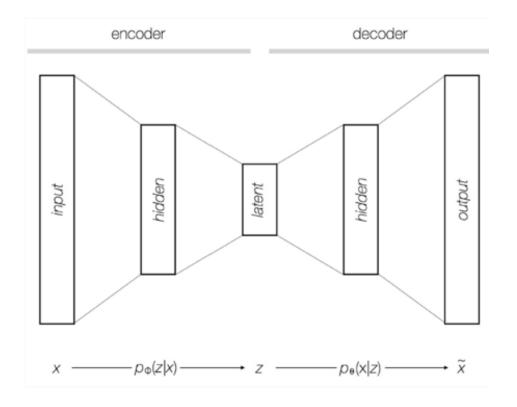
AEs learn how to describe training dataset in latent space

Data compression, dimensionality reduction (PCA) and de-noising

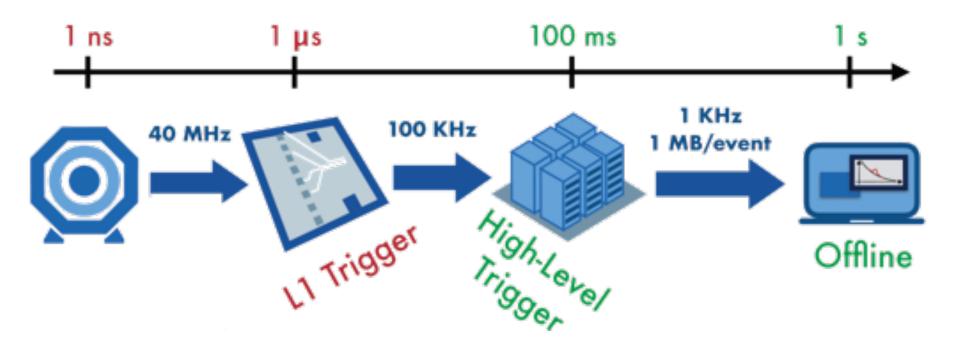
Variational AEs have added constraints on the encoded representations

CERN Openlab

Learn latent model then sample from it Many applications at the LHC



Triggers: real time event selection



We can process only a minimal fraction of collider data

Keep only the **interesting** events

Sophisticated studies to optimise trigger algorithms for specific physics processes

We don't know what **unknown physics** looks like!

ern CERN

30

VAE for new physics mining

Physics mining as an anomaly detection problem

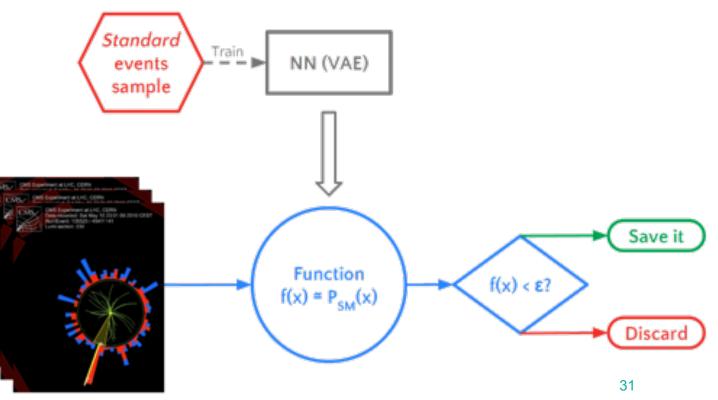
Classical strategy uses a very loose selection

1M Standard Model events per day Will not scale

Use anomaly detection tools

Train a VAE on known physics Monte Carlo data Real detector data

Run it in real time and store only "anomalies"



openlab

Selecting the unknown!

VAE as model-independent new physics trigger

Create a dataset of **anomalous events** Can probe **large range of processes** Alternative strategy, parallel to canonical approaches Might open **new physics** directions

CERN openlab

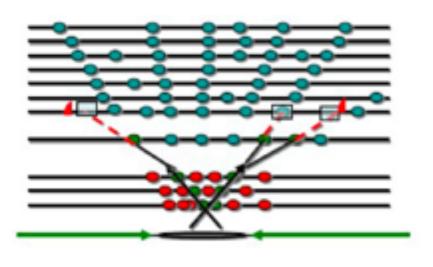
--- Model dep. VAE ··· Model dep. on a different model 10^{0} 10^{-1} 10^{-2} BSM efficiency 10-3 10^{-4} $A \rightarrow 4\ell \ (R_{\odot WP} = 26.9)$ $LQ (R_{@WP} = 3.9)$ 10^{-5} $h^0 \rightarrow \tau \tau \ (R_{\otimes WP} = 3.6)$ − $h^{\pm} \rightarrow \tau \nu (R_{@WP} = 3.2)$ 10⁻⁶ 10^{-5} 10^{-3} 10^{-2} 10^{-1} 10^{-4} SM efficiency $\varepsilon_{SM} = 5.4 \cdot 10^{-6} \Leftrightarrow 30 \text{ evts/day}$

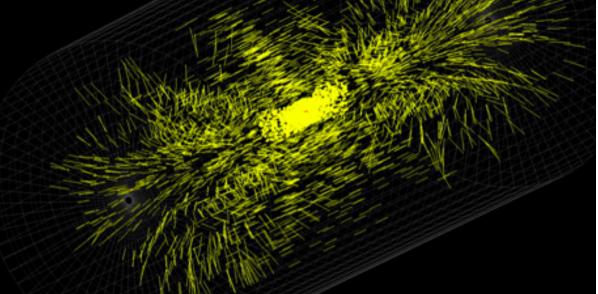
Pattern recognition in HEP

Particle Trajectory Reconstruction

Particle trajectory bended in a solenoid magnetic field Need curvature to measure momentum

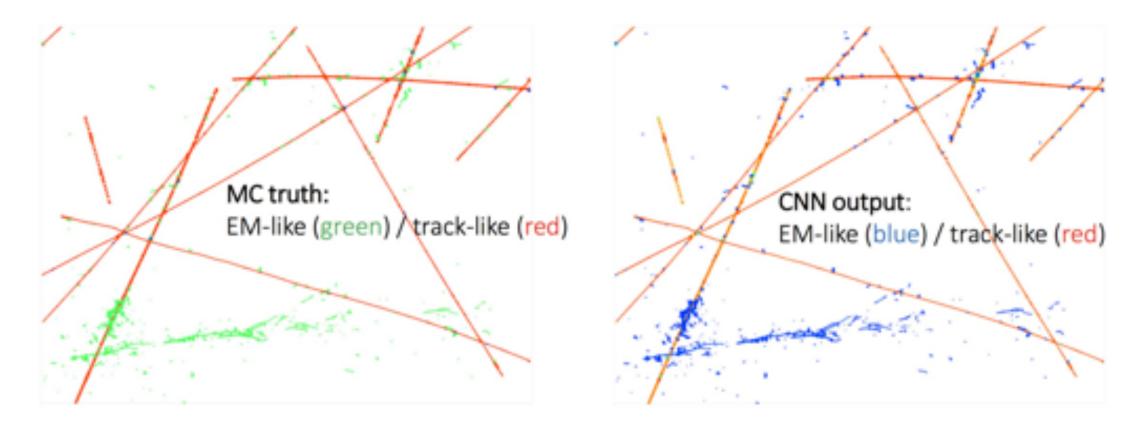
Particle ionize silicon sensors arranged in concentric layers Thousands of **sparse hits** Many hits are uninteresting





CERN Tin CERN

AutoEncoders for tracking



CNN used for activity segmentation and detector hits classification

More examples

A major challenge after LHC upgrade

Hopefield network http://inspirehep.net/record/300646/ CNN in NOVA https://arxiv.org/abs/1604.01444 HEP.TrkX : <u>https://heptrkx.github.io/</u> TrackML : https://tinyurl.com/y84yd5hn

Quantum annealing!

Quadratic Unconstrained Binary Optimisation (QUBO) can be mapped to an Ising Hamiltonian with change of variable $\{0,1\} \leftarrow \rightarrow \{-1,1\}$

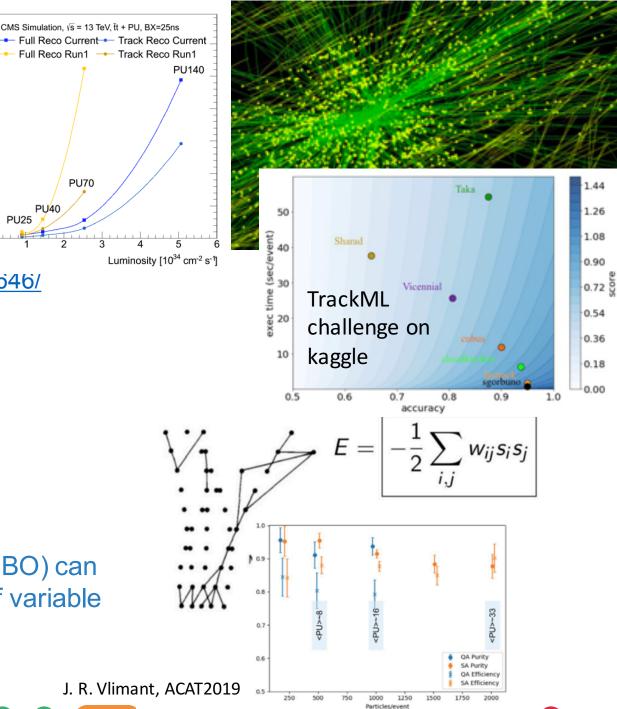
"ime/Ev

20

10

PU25

openlab



A quantum advantage for ML?

Quantum linear algebra is generally faster than classical counterpart

Some standard ML techniques estimate the **ground state of** Hamiltonians

ML algorithms have some tolerance to errors

Specific **quantum techniques** can be exploited to bring further improvement

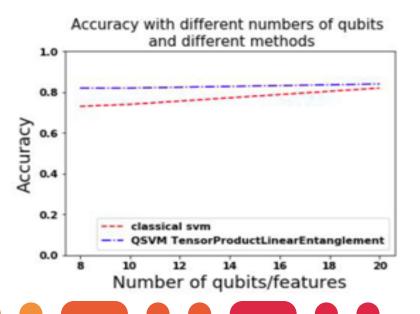
Quantum Support Vector Machine

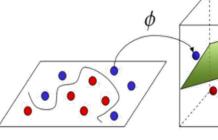
Quantum Machine Learning are among the first applications to be implemented on near-term devices

- Quantum SVM for ttH (H $\rightarrow \gamma \gamma$) classification
 - QSVM is simulated on IBM Qiskit simulator
 - Entanglement is used to encode relationships between features
- Apply PCA to input data features

ern CERN Openlab

- Reduced from 45 to 8,10 or 20 (limited by number of qubits)
- Running full training with quantum simulators requires large computing resources
 - Memory increases with qubit, training events and complexity





Input Space

Quantum GAN

CERN Openlab

Generative Adversarial Networks are among the most interesting models in classical machine learning

Quantum GAN would have more representational power than classical GAN

Different hybrid classical-quantum algorithms for generative models exist

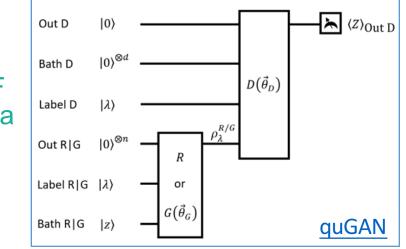
i.e quantum Variational Auto-Encoders on D-Wave annealer

Train a quantum GAN to generate few-pixels images

Currently investigating two possible approaches:

A hybrid schema with a quantum generator learning the target PDF using either a classical network or a variational quantum circuit as a discriminator (Variational Quantum Generator)

Full quantum adversarial implementation (quGAN)



Conclusions ...again

DNN training and inference will likely become **important workflows** for large experiments

So what is the HEP community looking into?

Integrate new frameworks in "classical" software stacks

Expand a pure HTC approach to HPC and Cloud environments

Improve usability and deployment

Long term innovation such as Quantum Computing

DL lives in a **diversified ecosystem** that evolves extremely rapidly R&D and **collaboration** with industry and other communities is essential

Thanks!

Questions?

https://openlab.cern