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CERN openlab

A science — industry partnership to drive R&D and innovation
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“Science for peace” /. " e !
International organisation A - |
. 1954: 12 Member States ¢
close to Geneva, straddling —
Swiss-French border Members: Austria, Belgium, Bulgaria, Czech republic, Denmark,
Finland, France, Germany, Greece, Hungary, Israel, Italy,
FOU nded 1 954 Netherlands, Norway, Poland, Portugal, Slovak Republic, Spain,
Serbia, Sweden, Switzerland, United Kingdom
Facilities for fundamental Candidate for membership: Cyprus, Slovenia
. . . Associate members: India, Lithuania, Pakistan, Turkey, Ukraine
researCh In partICIe PhyS|CS Observers: EC, Japan, JINR, Russia, UNESCO, United States of
America
23 member StateS, Numerous non-member states with collaboration agreements
1.1 B CHF budget e B
3’1 97 Staff, fe”OWS, 2’531 staff members, 645 fellows, - |
. 21 ti
apprentices, ... bl
; : 7'000 member states, 1°800 USA,
13’128 associates 900 Russia, 270 Japan, ...
£ S lab [eidi -] sl



The Large Hadron Collider (LHC)
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The Higgs Boson
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The Higgs Boson completes the Standard Model,
but the Model explains only about 5% of our-Universe

What is-the other 95% of the Univer’se.made of?
How does gravity really works?
Why there is no ant'qafter in nature?



Data Handling and Computation

—

Offline Reconstruction

; * Processed data
Online Triggers and r (active tapes)

Filters

Offline Analysis

Lf;‘.;! l ‘ ! !

Offiine Simulation
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ICT Infrastructure

~170 sites, 42 countries

~800k CPU cores, 600 PB of storage
é, 2 million jobs/day

10-100 Gb links

220-440 Gbps

Geneva
Datacentre

Wigner
Datacentre
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Conclusions

DNN training and inference will likely become important workflows for large
experiments
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Some background

Deep
Learning at
BDT
NN @LEP @SLAC the LHC

Image from “Deep Learning”,l. GoodFellow, MIT press book
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Why? ...Big Data

LHC is entering the Big Data era

Accelerators infrastructure

9600 magnets for Beam Control
1232 superconducting dipoles for bending

Experiments (detectors & physics data)
330 PB of collisions data stored by end 2018

The computing infrastructure

LHC data is multi-structured, hybrid
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Why? ...New Challenges

Next generation colliders will require larger, highly granular detectors that will
generate huge particle data rates O(100 TB/s)
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How? ... Deep Learning

DL can recognize patterns in large complicated data sets

Re-cast physics problems as “DL problems”

ROC for Electron vs. Pi+ Classifier

1.0 -

Adapt DL to HEP requirements -
. ” " . 097
Adopting '"new” computing models _
§ 0.8 -
E B. Hooberman, S.V.
S0.7 et al. (NIPS 2017)
0.6 —— cell-based nn (width=256, depth=4)
-~ feature-based nn (width=256, depth=4)
- feature-based bdt (max depth 5)
0.5 : ; ; }
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Examples
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Generative models

The problem:
Assume data sample follows py,i, distribution
Can we draw samples from distribution p.oqer SUCh that Progel = Pyata?

A well known solution:
Assume some form for p,.q4e (USING prior knowledge, parameterized by 0)
Find the maximum likelihood estimator

0* — arggnax Z |Og(Pmode|(X; 0)) draw sam p|eS from Pox
xeD

Generative models don’t assume any prior form for
models

Extract meaningful representation from training data

=1, CERN
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Deep Generative Models

Internal representations learned by shallow systems are simple

- Deep Generative Models

= Allow higher levels of abstractions

= |Improve generalisation and tran
- Multiple applications

Discovery

Anomaly Detection

Planning

Transfer Learning
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Generative Models Zoo

Deep

Latent variables

Generative ——

Models

Fully-observed

NADE, EoNADE
Fully-visible sigmoid
belief networks

Pixel CNN/RNN
RNN Language mod.
Context tree switching

Discrgle

o Directed

Normal Means
Continuous
Markov Models
N-AR(p)
RNADE

Coniinuous

Boltzmann Machines
Discrete Markov
Random Fields
Ising. Hopfield

and Potts Models

=

Gaussian MRFs
Log-linear models

1 Undirected

Pictures from Danilo Rezende’s
Tutorial on Deep Generative Models

Indian buffet process
Dirichlet process
mixture

Discrete LVM
Sparse LVMs

Hidden Markov Model

Cascaded Indian
Buftet process

Hierarchical Dinchlet
pn WESS

Non-parametric

Discrete

Direct/
Linear

Parametric

PCA, factor analysis
Independent
components analysis

Gaussian LDS
Latent Gauss Field

Gaussian process LVM

Sigmoid Belief Net
Deep auto-regressive

networks (DARN)

Deep Gaussian
WOCESSES
Deep : .
Recurrent Gaussian
Process

GP State space model

Nonlincar factor
analysis

Nonlinear Gaussian
belief network

Decp Latent Gaussian
(VAE., DRAW)

Continuous

I



arXiv:1406.2661

Two networks competing with each other

Generator generates data from random noise

Generator learning is supervised by the discriminator
network

D: Detective

Arxiv:1701.00160
The forger/detective case

I ;-I-:,"-".,;'- Forger shows its Monalisa to the detective
AN "“:.', ) Y
t««E-{,';{;«j'-'-. Detective says it is fake
MY X .
Ta.20 e Forger makes new Monalisa based on feedback
G: Generator (Forger) I: Input for Generator lterate until detective is fooled
=¥1. CERN Image source
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How well
does it
work?

lan Goodfellow
- , | Follow | RV
@goodfellow_ian

L

4 years of GAN progress (source:
eff.org/files/2018/02/ ...)

2017

7:26 pm - 2 Mar 2018
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Performance evaluation

Deployment in scientific domains requires robust performance studies

We need to assess the difference between model PDF and real PDF
Mixing and coverage (diversity)
Saliency
Mode collapse or mode dropping
Overfitting (has the network memorized samples?)

Need quantities that are invariant to small translation, rotation, intensity changes

Define a way to map input into a feature space
Kullback-Leibler Divergence
Inception score, Fréchet Inception Distance
Maximum Mean Discrepancy
Structural Similarity Index

+ Physics Quantities Validation

20
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Fast simulation in High Energy
Physics

WLCG Wall Clock time for the ATLAS experiment
MC - related

Monte Carlo simulation is a major workload in
terms of computing resources.

& MC Simulation

& MC Reconstruction
MC Event Generation

& Analysis

“ Group Production

Generative Models are a generic approach to
replace expensive calculations

“ Data Processing
TO Processing
“ Others

Inference is faster than Monte Carlo approach

Industry building highly optimized software,

Time to create an electron shower

hardware, and cloud services.

Time/Shower

Method Machine
(msec)

Full Simulation .
Intel Xeon Platinum

Numerous R&D activities (LHC and beyond) (geantd) 8180
3DGAN Intel Xeon Platinum
. (batch size 128) 8160 (TF 1.12) -
e openiab SV, ACAT2019 2




Detector output as 3D image

Array of absorber material and silicon sensors

CLIC is a CERN project for a linear ,
accelerator of electrons and positrons to TeV Ny
energies (Y

Electromagnetic calorimeter design
Sparse images
Highly segmented (pixelized)
Large dynamic range
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3D convolutional GAN

Generator [

Discriminator

o Pacdrg Zevo P addng

~1M parameters
Total model Size: 3.8MB
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D A N 5 Binary cross entropy Testing losses for GAN
—— Gen gen (Binary cross entropy)

—— Disc gen (Binary cross entropy)

Real/Fake Histogram for 150 GeV
GAN G4
4 Entri 1621 Entri 1621
3 ies + —‘» ies

Conditional training, Custom losses e HENN
0.2E i
Performance validation Y B -
o.os; E _ﬂLL.‘_Lm *GAN

o

Convergence and discriminator performance - I B

Comparison to Monte Carlo

Energy Predictions from Regression Nets for GAN and GEANT4 Samples

Shower Shapes, Sampling Fraction BT

CO rre | atIO ns S pa rs | ty etC 2 ‘ W2 Accuracy of Classification Nets on GAN and GEANT4 Electron Samples
“In-house inception score”

0.99 4

Predicted Energy
=
w
o

TriForce(V) classification and regression on
GAN/GEANT4 100

et 0.98
Image Quality Analysis .
T 130 T30 150 180 200
True Energy 0.96
0.95 -
(UMatt Zhang, 24

https://github.com/BucketOfFish/Triforce_CaloML
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Generated events

Dynamic range and sparsity

Cell energies Histogram for 100.00-199.00 GeV
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G4

- Ecalg,,)/Ecal

G4

(Ecal

Transfer learning: extending the
energy range

: : : : — G4
e R i —— GAN (MAE=71.790329)
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Sample diversity

Structural Similarity Index

Structural Similarity Index (SSIM) [4] is used to assess similarity between

Images
Tipically used in denoising applications

Measure diversity in GAN generated images

E=150 GeV, orthogonal incident angle

mm
1 0.94 0.95
le-2 0.21 0.25
le-4 0.045 0.061

le-6 0.045 0.051
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Other applications in fast simulation

Generative models for ALICE TPC simulation (acaT2019)

Conditional Wasserstein GANSs for fast simulation of electromagnetic showers in
a CMS HGCAL prototype (ML wa 04/18)

Variational AutoEncoders to simulate ATLAS LAr calorimeter (pasc1s)

Wasserstein GANs to generate high-level physics variables based on Monte
Carlo ttH (superfast-simulation) (ML wa 04/18)

Particle-GAN for Full Event Simulation at the LHC (ACAT2019)

Refining Detector Simulation using Adversarial Networks (mL wG 04/
18)

Model-Assisted GANs for the optimisation of simulation parameters (ML wa 04/19)

=1, CERN
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AutoEncoders &
Variational AutoEncoders

AEs learn how to describe training
dataset in latent space

Data compression, dimensionality reduction
(PCA) and de-noising

encoder decoder

Variational AEs have added
: s & IS
constraints on the encoded g S g § %
representations
Learn latent model then sample from it
Many applications at the LHC
X pelzix) 4

Pe(x|2)
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Triggers: real time event selection

I ns 1 ps 100 ms ls
. 40 MHz “ 100 KHz : “:B';:,‘em
' - . e‘ 6;.
10 /\9‘1%
\ 99@,. &/

We can process only a minimal fraction of collider data
Keep only the interesting events

Sophisticated studies to optimise trigger algorithms for specific physics processes
We don’t know what unknown physics looks like!

=1, CERN
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O. Cerri,ACAT2019

VAE for new physics mining

Physics mining as an anomaly detection problem

Classical strategy uses a very loose selection
1M Standard Model events per day
Will not scale

Standard
events
sample

22wl NN (VAE)

Use anomaly detection tools

Train a VAE on known physics ﬂ

Monte Carlo data
Real detector data

Run it in real time and store
only “anomalies”

Function

f(x) = P, (x)

=", CERN
I,= openlab



Selecting the unknown!
--- Model dep. VAE

VAE as model-independent new physics trigger ..« Model dep. on a different model

10°

Create a dataset of anomalous events |
Can probe large range of processes 107
Alternative strategy, parallel to

canonical approaches

BSM efficiency
—
=

—
<

Might open new physics directions 7 st e =269
| — LQ (Rgwr = 3.9)
“ —id ho_,n. (R@WP — 3.6)

---------

—— h*->71v (Rgwe = 3.2)

10-6‘-6' "MRN-5 104  10-3 102  1n-1
10 0 10 10 10 10
SM efficiency
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J-R. Vlimant, CERN-DS seminar

Pattern recognition in HEP

Particle Trajectory Reconstruction

Particle trajectory bended in a solenoid magnetic field
Need curvature to measure momentum

Particle ionize silicon sensors arranged in concentric layers
Thousands of sparse hits
. . . Hits associated to found tracks only.
Many hItS are UnlntereStlng At least as many pre-filtered or not associated

— > 90— d
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AutoEncoders for tracking
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CNN used for activity segmentation and detector hits classification
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| CMS Simulation, Vs = 13 TeV, it + PU, BX=25ns
60— —= Full Reco Current-—+— Track Reco Current
Full Reco Run1 = Track Reco Run1

PU140 |

Time/Event [a.u.]

More examples

A major challenge after LHC upgrade = Q 3
Hopefield network http://inspirehep.net/record/300646/ e -;rzo TackML e ::u
CNN in NOVA https://arxiv.org/abs/1604.01444 ¢! challenge on .
HEP.TrkX : https://heptrkx.github.iol °| e -
TrackML : https://tinyurl.com/y84yd5hn R

|
E = —5 Z W,'jS,'Sj
IJ

Quantum annealing!

Quadratic Unconstrained Binary Optimisation (QUBO) can i

be mapped to an Ising Hamiltonian with change of variable L .

{0,1} <=>{-1,1} : :
T openiab J.R.Vlimant, ACAT2019 | @ wmes
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A quantum advantage for ML?

Quantum linear algebra is generally faster than classical
counterpart

Some standard ML techniques estimate the ground state of
Hamiltonians

ML algorithms have some tolerance to errors

Specific quantum techniques can be exploited to bring further
Improvement

=" CERN lab 36
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Quantum Support Vector Machine = o

Quantum Machine Learning are among the first applications to be implemented on
near-term devices ¢

Quantum SVM for ttH (H — yy) classification
QSVM is simulated on IBM Qiskit simulator

: . ) Input Space Feature Space
Entanglement is used to encode relationships between features
] A ith different numbers of qubit
Apply PCA to input data features curacy with different numbers of qubits

Reduced from 45 to 8,10 or 20 (limited by number of qubits)

-
-
-
- S menean®
R
-

Running full training with quantum simulators requires large >
computing resources %
Memory increases with qubit, training events and complexity X

=== classical svm
—= QSVM TensorProductlLinearEntanglement
0.0 v - v o v - -
=% CERN lab 8 10 12 14 16 18 20
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Quantum GAN

Generative Adversarial Networks are among the most
iInteresting models in classical machine learning

Quantum GAN would have more representational power than
classical GAN

Different hybrid classical-quantum algorithms for generative models
exist
I.e quantum Variational Auto-Encoders on D-Wave annealer

Train a quantum GAN to generate few-pixels images

Currently investigating two possible approaches:

A hybrid schema with a quantum generator learning the target PDF
using either a classical network or a variational quantum circuit as a
discriminator (Variational Quantum Generator)

Full quantum adversarial implementation (QUGAN)

=% CERN
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Conclusions ...again

DNN training and inference will likely become important workflows for large
experiments

So what is the HEP community looking into?
Integrate new frameworks in “classical” software stacks
Expand a pure HTC approach to HPC and Cloud environments
Improve usability and deployment
Long term innovation such as Quantum Computing

DL lives in a diversified ecosystem that evolves extremely rapidly

R&D and collaboration with industry and other communities is essential
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Thanks!

Questions?

=", CeRN https://openlab.cern
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