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MOTIVATION & NEED: INTEGRATION OF AI + MOLECULAR 
DYNAMICS (MD) SIMULATIONS

• Simulations of physical phenomena take 45-60% of 
supercomputing time

• Coupled to experimental data 
• “Exascale simulations will require some analyses… be 

performed while data is still resident in memory…”
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KEY CONTRIBUTIONS: ALGORITHMS FOR AI-DRIVEN MD 
SIMULATIONS 

§ Data analytic framework without 
need to modify underlying 
simulation software:

– Online (in situ) analytics for feature 
extraction and evaluation 

– Simulation scaling can be carried out 
independently

§ Propagation framework in lower 
dimensions allows for better 
scheduling, improving throughput

– Significant reduction in model 
evaluation through integration of 
equations

– Simultaneously quantifies how good 
“current” state and model estimates 
are
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§ Building biophysically meaningful, low-dimensional latent 
representations of simulation data:
– Deep learning for MD data
– Convolutional variational autoencoder

§ Predicting where we should go next in MD simulations:
– Building a recurrent autoencoder to predict future step

§ Preliminary work on using reinforcement learning to fold proteins

OUTLINE: ALGORITHMS FOR AI-DRIVEN MD SIMULATIONS
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A VARIATIONAL APPROACH TO ENCODE PROTEIN 
FOLDING WITH CONVOLUTIONAL AUTO-ENCODERS 
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4 convolution layers 4 deconvolution layers

1. 64 filters, 3x3 window, 1x1 stride, RELU
2. 64 filters, 3x3 window, 1x1 stride, RELU
3. 64 filters, 3x3 window, 2x2 stride, RELU
4. 64 filters, 3x3 window, 1x1 stride, Sigmoid
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D. Bhowmik, M.T. Young, S. Gao, A. Ramanathan, BMC Bioinformatics (2019)
Related work: 
Hernandez 17 arXiv,
Noe Nat. Comm. (2018) 
Doerr 17 arXiv
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of its position in the data. In contact map representations, the state of the protein depends on
the local interactions between a few atoms rather than on the global position of all atoms
in the protein. Because these local interactions do not always appear in the exact same
place in the protein, convolutional layers are better suited to recognize these local patterns
independent of their position compared to feedforward networks. The architecture for the
convolutional autoencoder (CVAE) used in our experiments is illustrated in Figure 1.

Each CVAE was trained for a fixed number of epochs that was determined by the conver-
gence of loss and variance-bias trade-off. The batch size was selected to be relatively small
(length of the training data/100) to ensure reduced data in latent space do not collapse. We
divided each dataset into training/testing/validation (80%/10%/10% of the simulation tra-
jectories). Although not a requirement for unsupervised learning techniques, we used the
validation data to characterize both the clustering and reconstruction quality of the CVAE.
For example for the BBA system [32], we used a total of 1.1 million conformations of
which 0.88 million conformers were used for training, with the remaining 0.22 million
conformers equally split for testing and validation of the CVAE on unseen data from the
same trajectory. The second trajectory from the BBA simulations was used only for test-
ing the CVAE based on the training from the first trajectory. The various hyperparameter
settings are shown in Table 1.

Results

We posited that the CVAE (described in Methods section) encoding would result in a model
that can automatically capture biophysically relevant features from the simulation datasets.
We used three model protein folding systems, namely Fs peptide, villin headpiece (VHP)
and BBA to demonstrate that the CVAE can learn a biophysically relevant latent space
that corresponds to folding reaction coordinates, including fraction of native contacts and
root mean squared deviation (RMSD) to the native state. To calculate the fraction of native
contacts we use a definition similar to Savol and Chennubhotla [33]. Native contacts are
based on a distance cut off of 8 Å or less between between C↵ atoms and at least 75%
of conformations remain within an RMSD cut-off of 1.1 Å of the native structure. First,
we evaluate the ability of CVAE to learn a reduced dimensional space given the MD sim-
ulation data. Second, we show that the CVAE latent space corresponds to biophysically
relevant features for each of the folding simulations studied. Finally, we demonstrate that
the CVAE latent features can be transferred to other simulations, making it generalizable
to a particular protein type.

Reconstruction quality of CVAE on protein folding trajectories
In order to evaluate the CVAE reconstruction quality from the protein folding trajectories,
we first examined the overall loss (L) of the CVAE over the training epochs (Equation 1).

L = Er + El (1)

Er = � 1

n

nX

i=1

Xilog(f(zi)) (2)

El = KL(z||Normal(0, 1)) (3)

L is characterized as the sum of the reconstruction loss Er (Equation 2) and the latent
loss El (Equation 3). The reconstruction loss measures how well the CVAE can reconstruct

Error of 
Reconstruction

How good is my pixel-by-
pixel reconstruction? 

Latent loss
Let’s also not get too 
dragged by outliers…



CVAE REVEALS METASTABLE STATES IN PROTEIN FOLDING…

MSM Builder Datasets, Pande group
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§ Building biophysically meaningful, low-dimensional latent 
representations of simulation data:
– Deep learning for MD data
– Convolutional variational autoencoder

§ Predicting where we should go next in MD simulations:
– Building a recurrent autoencoder to predict future step

§ Preliminary work on using reinforcement learning to fold proteins

OUTLINE: ALGORITHMS FOR AI-DRIVEN MD SIMULATIONS
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DATA-DRIVEN PROPAGATION AND ESTIMATION FOR 
SIMULATIONS (1)
§ Model the state update as an extrapolation process:

– Learn the encoding such that there is an update st that 
corresponds to the current transition ht

– Multiple options for feature representations including linear, 
non-linear & hybrid models

§ Evolve the system in the feature space (st) using a 
single layer perceptron regressor

– Efficient for training and running at local scale

§ Successful applications of machine learning based 
simulations exist for smaller systems1-3

1S. Ehrhardt, A. Monszpart, N. Mitra, A. Vedaldi, arXiv: 1706.02179 (2017)
2S. Ehrhardt, A. Monszpart, N. Mitra, A. Vedaldi, arXiv: 1703.00247 (2017)
3J. Thompson, K. Schlachter, P. Sprechmann, K. Perlin, arXiv: 1607.03597v3 (2016) 

Current transition ht

Update

Build a regressor that 
updates probabilities of the 

states sampled: 
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DATA-DRIVEN PROPAGATION AND ESTIMATION FOR 
SIMULATIONS (2)

§ The decoder provides : 
– State estimate: update positions, velocities, 

and other state variables
• Current error in state is dictated by what the 

features have learned from the encoding step
– Model estimate: how “far away” from actual 

system evaluation is the current state
• L2 norm from extrapolation

§ Decoding step can include experimental  
observations to prune states

STATE ESTIMATE MODEL ESTIMATE

Experimental 
data



DOES THIS WORK? 
CAPTURING TEMPORAL EVOLUTION IN MD SIMULATIONS…
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LSTM-AUGMENTED VAE CAPTURES FS-PEPTIDE TIME-DEPENDENT 
CHANGES ALONG FOLDING PATHWAYS
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§ Building biophysically meaningful, low-dimensional latent 
representations of simulation data:
– Deep learning for MD data
– Convolutional variational autoencoder

§ Predicting where we should go next in MD simulations:
– Recurrent autoencoders for predict future step

§ Preliminary work on using reinforcement learning to fold proteins

OUTLINE: ALGORITHMS FOR AI-DRIVEN MD SIMULATIONS
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RL-FOLD: A NAÏVE DESIGN BASED ON NATIVE 
STRUCTURE

C
offee M

ug

Start

Extract Contact 
Matrices

C
offee Pot

C
offee M

ug

Trajectorie
s

Latent Data

Stop and signal 
end of episode

CVAE

Output

Run MD
simulations

Output

Contact 
Matrices

Input

Input

Output

Input

DBSCAN
Clustering

Outliers are 
present?

Yes NoSave topologies 
to spawn new 
simulations

Stop
Calculate
Reward 

Calculate
Reward 

No. of native contacts in the ith sample RMSD threshold

No. of conformers in the cluster of the ith sample RMSD to the native state 

No. of samples

No. of clusters

• Baseline: work with manually set threshold 
for RMSD from native state

• Deep RL: design a policy network that auto-
detects the RMSD threshold

• Hypothesis: RL will allow sampling of 
“unseen” states 
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PRE-TRAINED DEEP LEARNING MODEL ALLOWS RL 
EXPLORES POSSIBLE STATES IN PROTEIN FOLDING
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HOW DOES THE FOLDING LOOK?

• Within 3-4 iterations, RL reaches 
near native state RMSD

• Further cycles explore misfolded 
states:
• Unfold within a few steps of 

MD simulations

• Sampling allows exploration of 
more intermediate states

• Builds on all-atom simulations + 
RL in a loop
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SUMMARY
§ Deep learning / AI techniques show promise: learning biophysical characteristics 

that can be used to guide simulations
§ Reinforcement learning: Preliminary evidence suggests the approach is feasible to 

speed up protein folding simulations!
– How to integrate with physics-based models? 
– How to build scalable approaches beyond RL? 
– How to integrate with sparse experimental observables? 

§ Enabling iterative, “active”, and optimal experimental design
§ Extensible library: Molecules to enable analysis of MD simulations at scale with 

Deep(µ)scope supporting AI-driven MD simulations

• Debsindhu Bhowmik (ORNL)
• Heng Ma (ORNL)
• Shantenu Jha & the RADICAL 

team (Rutgers) 
• Venkat Vishwanath (Argonne)
• and many summer interns…

Team
• OLCF Early Access on Summit 

(OLCF)
• ALCF (for testing) 
• ALCC Computing Allocation

Computing Time

• DOE-NCI JDACS4C
• DOE Exascale Computing 

Project Cancer Deep Learning 
Environment (CANDLE)

Funding



17

SOME EMERGING CHALLENGES IN HPC FOR MULTI-
SCALE SIMULATIONS… 

• Design of coupled data analytic and simulation workflows on OLCF -
Summit and ALCF – A21/Theta
– In situ analytics approaches are required

– Streaming applications of ML are different from post-processing of data

• Scaling DL/ AI approaches for MD simulations
– Faster and more efficient training for deep learning / AI approaches 

– Tensor based approaches to build deep learning algorithms



THANK YOU!! 
ramanathana@anl.gov


