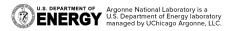


GENERATIVE MODELING OF PROTEIN FOLDING TRANSITIONS WITH RECURRENT AUTO-ENCODERS

DEBSINDHU BHOWMIK,¹ MICHAEL T. YOUNG,¹ CHRISTOPHER B. STANLEY,¹ ARVIND RAMANATHAN²

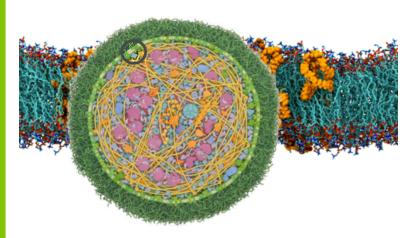
¹Computational Science & Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830 ²Data Science & Learning Division, Argonne National Laboratory, Lemont, IL 60439

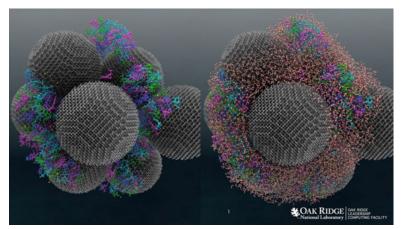
Email: ramanathana@anl.gov



Deep Learning for Science Workshop ISC 2019

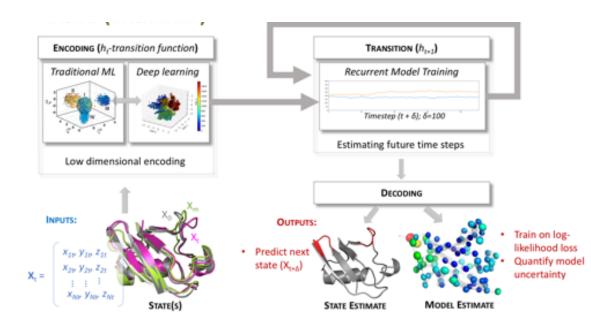
MOTIVATION & NEED: INTEGRATION OF AI + MOLECULAR DYNAMICS (MD) SIMULATIONS





- Simulations of physical phenomena take 45-60% of supercomputing time
 - · Coupled to experimental data
- "Exascale simulations will require some analyses... be performed while data is still resident in memory..."

KEY CONTRIBUTIONS: ALGORITHMS FOR AI-DRIVEN MD SIMULATIONS



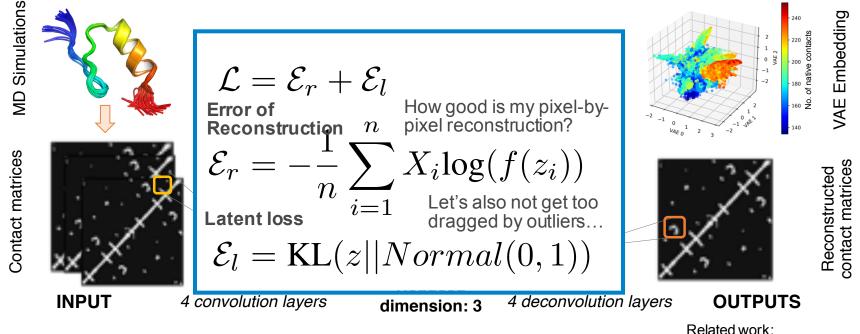
- Data analytic framework without need to modify underlying simulation software:
 - Online (in situ) analytics for feature extraction and evaluation
 - Simulation scaling can be carried out independently
- Propagation framework in lower dimensions allows for better scheduling, improving throughput
 - Significant reduction in model evaluation through integration of equations
 - Simultaneously quantifies how good "current" state and model estimates are

OUTLINE: ALGORITHMS FOR AI-DRIVEN MD SIMULATIONS

- Building biophysically meaningful, low-dimensional latent representations of simulation data:
 - Deep learning for MD data
 - Convolutional variational autoencoder
- Predicting where we should go next in MD simulations:
 - Building a recurrent autoencoder to predict future step

Preliminary work on using reinforcement learning to fold proteins

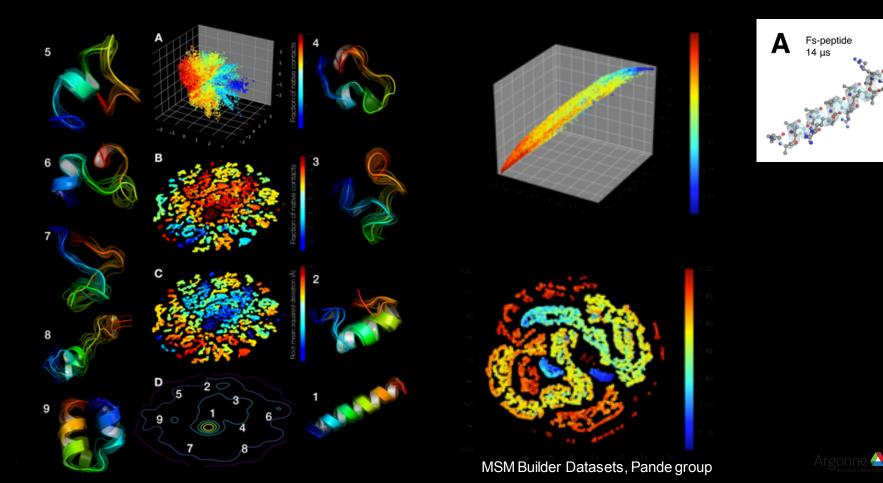
A VARIATIONAL APPROACH TO ENCODE PROTEIN FOLDING WITH CONVOLUTIONAL AUTO-ENCODERS



D. Bhowmik, M.T. Young, S. Gao, A. Ramanathan, BMC Bioinformatics (2019)

Hernandez 17 arXiv, Noe Nat. Comm. (2018) Doerr 17 arXiv

CVAE REVEALS METASTABLE STATES IN PROTEIN FOLDING...



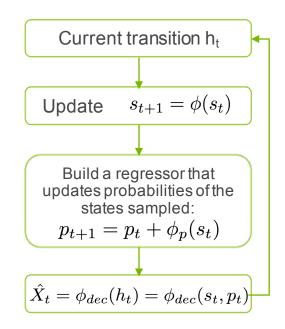
OUTLINE: ALGORITHMS FOR AI-DRIVEN MD SIMULATIONS

- Building biophysically meaningful, low-dimensional latent representations of simulation data:
 - Deep learning for MD data
 - Convolutional variational autoencoder
- Predicting where we should go next in MD simulations:
 - Building a recurrent autoencoder to predict future step

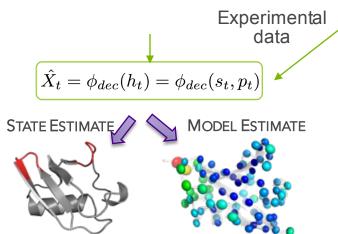
Preliminary work on using reinforcement learning to fold proteins

DATA-DRIVEN PROPAGATION AND ESTIMATION FOR SIMULATIONS (1)

- Model the state update as an extrapolation process:
 - Learn the encoding such that there is an update s_t that corresponds to the current transition h_t
 - Multiple options for feature representations including linear, non-linear & hybrid models
- Evolve the system in the feature space (st) using a single layer perceptron regressor
 - Efficient for training and running at local scale
- Successful applications of machine learning based simulations exist for smaller systems¹⁻³
 - ¹S. Ehrhardt, A. Monszpart, N. Mitra, A. Vedaldi, arXiv: 1706.02179 (2017)
 - 2S. Ehrhardt, A. Monszpart, N. Mitra, A. Vedaldi, arXiv: 1703.00247 (2017)
 - ³J. Thompson, K. Schlachter, P. Sprechmann, K. Perlin, arXiv: 1607.03597v3 (2016)

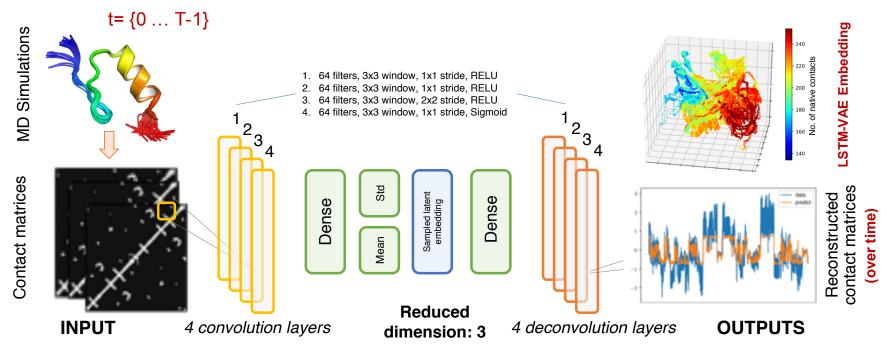


DATA-DRIVEN PROPAGATION AND ESTIMATION FOR SIMULATIONS (2)



- The decoder provides :
 - State estimate: update positions, velocities, and other state variables
 - Current error in state is dictated by what the features have learned from the encoding step
 - Model estimate: how "far away" from actual system evaluation is the current state
 - L2 norm from extrapolation
- Decoding step can include experimental observations to prune states

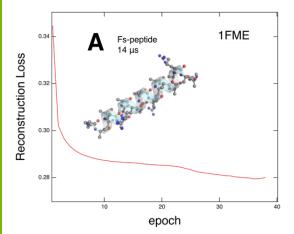
DOES THIS WORK? CAPTURING TEMPORAL EVOLUTION IN MD SIMULATIONS...

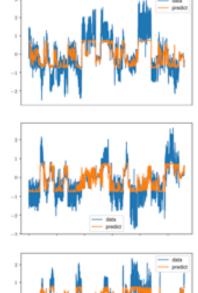


video-like

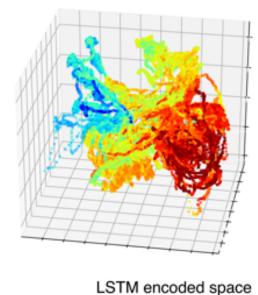
LSTM-AUGMENTED VAE CAPTURES FS-PEPTIDE TIME-DEPENDENT CHANGES ALONG FOLDING PATHWAYS

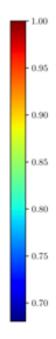
10000





2000 5000 hames Fs peptide (unseen data)

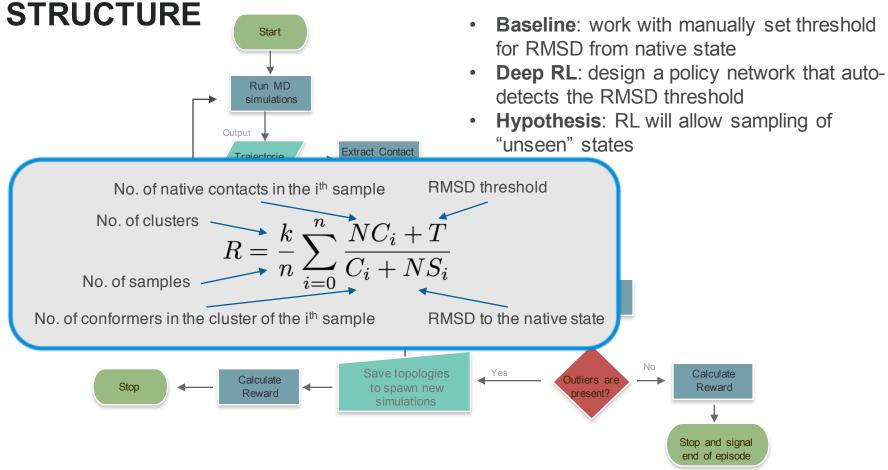




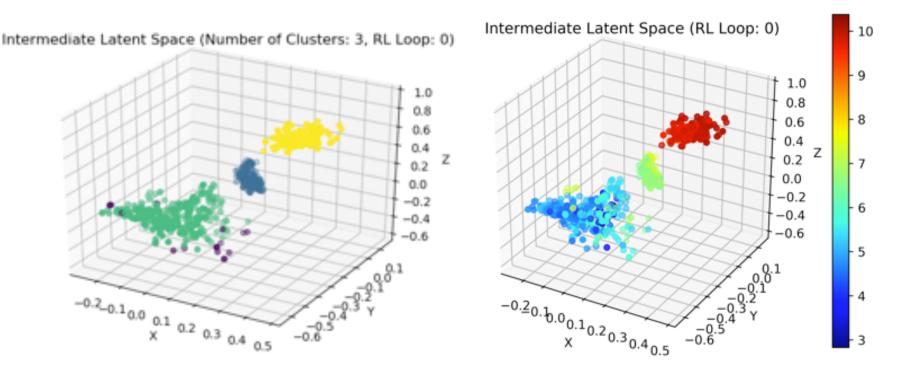
OUTLINE: ALGORITHMS FOR AI-DRIVEN MD SIMULATIONS

- Building biophysically meaningful, low-dimensional latent representations of simulation data:
 - Deep learning for MD data
 - Convolutional variational autoencoder
- Predicting where we should go next in MD simulations:
 - Recurrent autoencoders for predict future step
- Preliminary work on using reinforcement learning to fold proteins

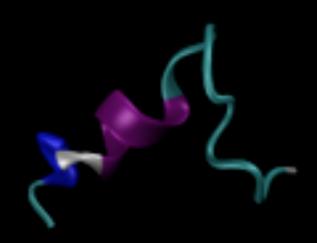
RL-FOLD: A NAÏVE DESIGN BASED ON NATIVE



PRE-TRAINED DEEP LEARNING MODEL ALLOWS RL EXPLORES POSSIBLE STATES IN PROTEIN FOLDING



HOW DOES THE FOLDING LOOK?



- Within 3-4 iterations, RL reaches near native state RMSD
- Further cycles explore misfolded states:
 - Unfold within a few steps of MD simulations
 - Sampling allows exploration of more intermediate states
- Builds on all-atom simulations + RL in a loop

SUMMARY

■ <i>De</i> tha	Team	m	Computing Time	racteristics
■ <i>Re</i> spe _ _	5 (/	ic Is R_	 OLCF Early Access on Summit (OLCF) ALCF (for testing) ALCC Computing Allocation 	is feasible to
– ■ Ena	 Venkat Vishwanath (Argonne) 	0 e	Funding	
= Ext	 and many summer interns ensible library: Molecules to enable ep(µ)scope supporting AI-driven MD 	S	 DOE-NCI JDACS4C DOE Exascale Computing Project Cancer Deep Learning Environment (CANDLE) 	cale with

SOME EMERGING CHALLENGES IN HPC FOR MULTI-SCALE SIMULATIONS...

- Design of coupled data analytic and simulation workflows on OLCF -Summit and ALCF – A21/Theta
 - In situ analytics approaches are required
 - Streaming applications of ML are different from post-processing of data
- Scaling DL/ AI approaches for MD simulations
 - Faster and more efficient training for deep learning / AI approaches
 - Tensor based approaches to build deep learning algorithms

THANK YOU!! ramanathana@anl.gov

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

