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The need for accurate weather forecasts is constantly increasing

- Weather forecasts are important to anticipate on extreme weather

Extreme precipitation in Summer 2018
Texelse Courant, 22 July 2018, © Pieter de Vries © De Gooi- en Eemlander, 5 September 2018

- The need for accurate and detailed weather models is increasing
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Weather models are slowly moving towards cloud-resolving grid spacings (dx ~ 10 m)
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The computational barrier of increasing resolution
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» ...but we need smart solutions to accelerate models Figure 5 | CPU and power requirements as a function of NWP model

resolution. Simplified illustration of the number of compute cores (left y-axis)
and power (in units of megavolt amps, MV A, right y axis) required for

-  Machine learnin gp rovides un |q ue oppo rtunities single 10-day model forecast (lower curves) and 50-member ensemble forecast
(upper curves) as a function of model resolution, given today’'s model code
and compute technology. The shaded arca indicates the range covered when
assuming pertfect scaling (bottom curve) and inefficient scaling (top curve),
respectively. Today’s single global forecasts operate at around 15 km while
ensembles have around 30 km resolution.

Bauer et al. (2015, Nature)



Machine learning can provide smart solutions for computation of physics

- Physical processes happening at scales smaller than the grid can be computationally very expensive

- Atmospheric radiation (Menno Veerman’s talk earlier today)

Transfer of solar and thermal energy through the atmosphere

- Microphysical processes

Processes that make water droplets and ice crystals

- Turbulent transport

Mixing caused by turbulence
Friction
Dispersion of pollutants

Water transport

Simulated wind patterns at 2 m height (black is no wind, yellow 4 m/s)
Domain is ~3000 x 2000 m



Where do fine scale flow characteristics matter: a case study of irrigation in the desert

- Next-generation weather models can better predict estimations of evaporation in irrigated regions

- Strong spatial variation in relative humidity near the land surface regulates evaporation of water

E ©@2016 George Steinmetz

Irrigation in semi-arid and arid regions leads to fascinating landscape patterns (Saudi-Arabia)
[MET-P: Machine-learned evapotranspiration prediction over irrigated agriculture]



Simulation of water transport: where are we and where do we want to go?

- Current weather models do not pick up the
structure of the irrigation structures

- Unrealistic representation of near-surface atmosphere

- In the ideal world, we make simulations that
capture all the physics (~1 m grid)

- Unfeasible in terms of computational power

- The challenge: the middle way (~100 m grid)

- Make 100 m resolution models produce the correct
water transport

- Make 100 m resolution models produce the correct
surface fluxes
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Atmospheric water content at 2 m height in the atmosphere.
Top is the simulation detail that we want.
Bottom is what can achieve in 10 years operationally.
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MicroHH as the simulation tool (www.microhh.org)

»  MicroHH is a CFD code for 3D simulation of the near-surface atmosphere at very high resolution (~1 m)

- Written in modern C++
- It has a NVIDIA CUDA mode for fully GPU-resident simulations (1 Tesla V100 ~ 300 cores of SURFsara Cartesius)

- Versatile code: from simple fluid dynamical problems to deep moist convection

Model description paper 28 Aug 2017

MicroHH 1.0: a computational fluid dynamics code for direct numerical
simulation and large-eddy simulation of atmospheric boundary layer flows
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http://www.microhh.org

The mathematical problem to solve

- The advection term in the one dimensional Navier-Stokes equation is
ou Ouu

ot  Ox

- If we take a perfectly resolved field and filter this to a coarser field, we get

ou Juu

ot  Ox

« Problem, we do not know the wu term

- We can define a new quantity, which we define the unresolved transport

T=UU—UU
o | ouu | or
ot  Ox  Ox

- Current subgrid-scale models to predict the unresolved transport are expensive or/and inaccurate



An illustration of the math: simulation in the high resolution model
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An illustration of the math using a cross section of the channel flow

ou  Ouu

ot  Ox

coarsened total uu
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An illustration of the math using a cross section of the channel flow
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An illustration of the math using a cross section of the channel flow
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Can neural networks predict the unresolved transport as a function of the resolved transport?

or

Can we train a coarse-resolution model to be as good as a fine-resolution model?



Using deep learning to make the 100-m simulation as accurate as the 1 m resolution

- We train the 100 m resolution simulation to be as accurate as the 1 m resolution

Input: flow, temperature, and Training: flow, temperature, and Output: unresolved transport at 100 m
moisture field at 100 m resolution moisture field at 1 m resolution

We aim to let the network predict
the unresolved transport
as a function of the
100 m resolution flow field

.......

SURF
Open Innovation Lab Ju Jduu O
provides expertise ot Or @ Or

in deep learning ol T

iInput layer o
hidden layer



Multilayer perceptron as a neural network

Network takes 3 3D dimensional blocks (5 x5 x 5 grid points)

Three wind components

Network predicts 9 unresolved fluxes (tensor)

Three wind components in three directions

One densely-connected layer of 80 nodes
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unresolved fluxes

hidden layer

output layer
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Showing the training in action

- ~300,000 training samples from 3D simulations

- TensorFlow is used for network training 0-41
— 0.2 -
- Theloss is the MSE (Adam optimizer) —t
‘v 0.0-
S
- The 500,000 iterations comprise 63 epochs = _07-
=, —0.
O
—
. Batch size 1000 i
—0.6 -

- Learning rate 0.0001

- Distributed training using TensorFlow + Horovod
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Quality of the network in predicting unresolved transport

The neural network is very well able to predict the unresolved transport

ou | 8ﬂﬂl

ot

ot Ox

Correlation of 0.7 - 0.8 is excellent for prediction of a chaotic system (inherent noise in system)
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Quality of the network in predicting unresolved transport in the 2D plane

- At a height of approximately 100 m in the atmosphere unresolved transport has the correct pattern

labels prediction
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Quality of the network in predicting unresolved transport in the 2D plane

- At a height of approximately 10 m in the atmosphere unresolved transport has the correct pattern
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Conclusions: machine learning shows promising results to model turbulent transport

- Need for accurate weather models is higher than ever

- Exponentially increasing power usage with model
resolution prohibits fast resolution increase

- Machine-learning can provide computationally cheap
and accurate computations of transport by turbulence o

- Our proof-of-concept for turbulent transport shows Corrcoef = 0.83 _
promising results — 0.0004- M
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- Fast inference mode key to successful application = 0
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